Datachain项目数据集标签系统升级:从labels到attributes的演进
在数据管理领域,清晰的元数据标识对数据集的高效管理至关重要。Datachain项目近期对其核心API进行了一项重要改进,将数据集级别的标签系统从"labels"更名为"attributes",这一变更不仅仅是术语上的调整,更代表着功能理念的升级。
术语变更的背景与意义
原生的"labels"命名在实践中容易与其他类型的标签概念产生混淆,特别是在涉及多维分类系统时。新的"attributes"命名更加准确地反映了其作为数据集元数据属性的本质特征。这种命名方式与数据治理领域的通用术语保持了一致,降低了用户的学习成本。
功能增强的核心要点
-
简化的属性标记:现在支持仅包含属性名的标记方式,如"NLP"或"Customer-Behaviour",这种标记适用于不需要具体值的分类场景。
-
键值对扩展:同时保留了键值对形式的标记能力,例如"location=US",这种结构化的标记方式便于实现精确筛选。
-
灵活的查询机制:系统支持两种查询模式:
- 存在性查询:查找包含特定属性名的数据集(如"location=*")
- 精确值查询:查找属性值与条件完全匹配的数据集(如"location=US")
API使用规范
根据项目维护者的建议,在实际API调用中应采用简写形式:
dc.datasets("myds", attr={"location": "US", "domain": "NLP"})
这一简写形式既保持了代码的简洁性,又与完整术语"attributes"保持概念上的一致性。
对生态系统的影响
此项变更需要同步更新到Datachain Studio可视化界面中,确保API与UI的术语统一。对于现有用户,建议逐步迁移原有的labels使用方式到新的attributes系统,虽然短期内可能会保持向后兼容,但从长远来看,采用新标准将获得更好的功能支持和更一致的体验。
数据工程师在使用新系统时,可以更灵活地组织数据集的元数据,例如将业务领域、地理信息、数据敏感级别等不同维度的信息通过统一的attributes系统进行管理,而不再需要维护多个独立的标签体系。
这一改进体现了Datachain项目对用户体验的持续优化和对行业最佳实践的遵循,为构建更加健壮的数据治理体系奠定了基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00