【亲测免费】 D2-Net开源项目教程
2026-01-23 04:48:09作者:贡沫苏Truman
1. 项目介绍
D2-Net是一个可训练的卷积神经网络(CNN),用于联合检测和描述局部特征。该项目基于论文"D2-Net: A Trainable CNN for Joint Detection and Description of Local Features",由Mihai Dusmanu等人于2019年发表在CVPR会议上。D2-Net在计算机视觉领域具有重要的应用价值,特别是在视觉定位和图像匹配等领域。
2. 项目快速启动
环境准备
首先,确保你的系统中已安装Python 3.6或更高版本。推荐使用Conda来管理环境:
conda create -n d2net python=3.6
conda activate d2net
然后,安装所需的依赖包:
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
conda install h5py imageio imagesize matplotlib numpy scipy tqdm
下载模型
下载预训练模型:
mkdir models
wget https://dusmanu.com/files/d2-net/d2_ots.pth -O models/d2_ots.pth
wget https://dusmanu.com/files/d2-net/d2_tf.pth -O models/d2_tf.pth
wget https://dusmanu.com/files/d2-net/d2_tf_no_phototourism.pth -O models/d2_tf_no_phototourism.pth
特征提取
使用extract_features.py脚本提取图像特征:
python extract_features.py --image_list_file images.txt
如果要提取多尺度特征,需要至少12GB的VRAM:
python extract_features.py --image_list_file images.txt --multiscale
使用kapture数据集
安装kapture:
pip install kapture
下载并提取kapture数据集特征:
kapture_download_dataset.py install "Extended-CMU-Seasons_slice22_*"
python extract_kapture.py --kapture-root pathto/yourkapturedataset (--multiscale)
3. 应用案例和最佳实践
视觉定位
D2-Net可以用于视觉定位任务。通过提取图像中的局部特征,并与预先构建的特征库进行匹配,可以实现图像的精确定位。
图像匹配
在图像匹配任务中,D2-Net提取的局部特征可以用于计算图像间的相似度,从而实现图像的匹配和拼接。
最佳实践
- 数据预处理:确保输入图像的质量,进行必要的预处理如去噪和增强。
- 模型选择:根据任务需求选择合适的预训练模型。
- 多尺度特征:对于复杂场景,使用多尺度特征可以提高特征的鲁棒性。
4. 典型生态项目
COLMAP
COLMAP是一个开源的3D重建和映射工具,可以与D2-Net结合使用,进行高精度的3D重建。
OpenCV
OpenCV是一个广泛使用的计算机视觉库,D2-Net提取的特征可以与OpenCV中的匹配算法结合,实现实时的图像匹配和跟踪。
kapture
kapture是一个用于描述SFM和其他传感器数据的文件格式,D2-Net支持从kapture数据集中提取特征,方便数据的集成和使用。
通过以上教程,你可以快速上手D2-Net项目,并将其应用到实际的计算机视觉任务中。希望这篇教程对你有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134