首页
/ 解决lm-evaluation-harness项目中VLLM后端的OOM内存问题

解决lm-evaluation-harness项目中VLLM后端的OOM内存问题

2025-05-26 18:32:32作者:齐添朝

在使用lm-evaluation-harness项目进行模型评估时,许多用户遇到了VLLM后端的内存溢出(OOM)问题。本文将深入分析这一问题的成因,并提供有效的解决方案。

问题现象分析

当用户尝试使用VLLM后端运行4B参数量的Qwen模型时,即使在80GB显存的A100显卡上,也会遇到OOM错误。值得注意的是,同样配置下运行8B参数的Llama3模型却能正常工作,这表明问题并非单纯由模型大小引起。

根本原因

经过技术分析,发现VLLM后端存在以下两个关键问题:

  1. GPU内存利用率参数未生效:尽管用户设置了gpu_memory_utilization=0.6,但实际运行时VLLM并未遵守这一限制。

  2. CUDA图构建消耗额外内存:VLLM默认会构建CUDA图以优化性能,但这一过程会消耗大量显存,特别是在处理长序列时更为明显。

解决方案

针对上述问题,推荐以下解决方案:

  1. 启用强制eager模式:在model_args中添加enforce_eager=True参数,可以禁用CUDA图构建,显著降低内存消耗。

  2. 组合参数优化:建议同时设置以下参数组合:

    • dtype="float":使用FP32精度(或根据需求选择FP16)
    • max_model_len=1024:限制最大序列长度
    • gpu_memory_utilization=0.6:显存利用率限制
    • enforce_eager=True:禁用CUDA图

实施建议

对于不同规模的模型,可参考以下配置:

  • 小模型(7B以下)

    • 可使用默认配置,但建议添加enforce_eager=True
  • 中大模型(7B-13B)

    • 必须使用enforce_eager=True
    • 适当降低gpu_memory_utilization至0.6-0.8
  • 超大模型(13B以上)

    • 除上述参数外,还需考虑降低max_model_len
    • 可能需要使用量化技术

技术原理补充

VLLM后端的内存消耗主要来自三个方面:

  1. 模型参数存储
  2. KV缓存
  3. CUDA图构建开销

其中CUDA图构建虽然能提高推理效率,但会占用大量临时显存。在eager模式下,VLLM会放弃这部分优化,转而采用更节省内存的执行方式,这也是为什么enforce_eager=True能有效解决OOM问题的原因。

总结

通过合理配置VLLM后端的参数,特别是启用eager模式,可以显著降低显存消耗,解决评估过程中的OOM问题。建议用户在遇到类似问题时,优先尝试本文推荐的参数组合,并根据实际硬件条件进行微调。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8