解决lm-evaluation-harness中使用vLLM OpenAI服务器运行piqa任务时的logprobs限制问题
在使用lm-evaluation-harness评估框架配合vLLM的OpenAI兼容服务器运行piqa任务时,开发者可能会遇到一个常见的错误:openai.BadRequestError提示"不能请求超过5个logprobs"。这个问题源于OpenAI API对logprobs参数的限制,而评估框架默认会请求更多的logprobs值。
问题背景
logprobs是语言模型输出的一个重要指标,它表示模型对每个token预测的对数概率。在评估任务中,获取这些概率值对于准确计算模型性能至关重要。然而,OpenAI API对logprobs参数设定了上限,最多只允许请求5个值。
问题分析
当lm-evaluation-harness框架尝试请求10个logprobs值时(这是框架的默认设置),vLLM的OpenAI兼容服务器会拒绝这个请求并返回400错误。这是因为vLLM默认遵循了OpenAI API的规范限制。
解决方案
针对这个问题,有两种可行的解决方法:
-
修改评估框架的logprobs参数:可以将框架中请求的logprobs数量从10减少到5,这是最简单直接的解决方案。不过需要注意,减少logprobs数量可能会影响某些评估指标的精确度。
-
调整vLLM服务器的配置:vLLM的OpenAI兼容服务器提供了
--max-logprobs启动参数,允许用户自定义最大logprobs数量。通过设置更大的值(如10或更高),可以完全满足评估框架的需求,同时保持评估的准确性。
实施建议
对于大多数评估场景,建议采用第二种方案,即调整vLLM服务器的配置。这样可以:
- 保持评估框架的原始设计意图
- 确保评估结果的准确性
- 避免修改框架源代码带来的维护问题
启动vLLM服务器时,可以添加如下参数:
--max-logprobs 10
潜在问题与注意事项
在解决logprobs限制问题后,可能会遇到GPU内存不足的情况。这是因为:
- 计算和存储更多logprobs需要额外的显存
- 评估任务通常需要处理大量样本
建议:
- 适当减小批量大小(batch_size)
- 监控GPU内存使用情况
- 必要时升级硬件配置
总结
通过合理配置vLLM服务器的logprobs参数,可以顺利解决lm-evaluation-harness框架在评估piqa等任务时遇到的限制问题。这种解决方案既保持了评估的准确性,又无需修改框架的核心代码,是最为推荐的实践方式。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00