Apache Ignite 技术文档
1. 安装指南
Apache Ignite 的安装需要Java环境。请确保您的系统已安装Java 8或更高版本。以下是安装Apache Ignite的步骤:
- 从Apache Ignite官方网站下载二进制发行包。
- 解压下载的文件到所选目录。
- 配置环境变量,将
IGNITE_HOME
设置为解压目录的路径,并将%IGNITE_HOME%\bin
添加到系统路径(对于Windows系统)或$IGNITE_HOME/bin
添加到PATH
环境变量(对于Unix系统)。
2. 项目使用说明
Apache Ignite是一个分布式数据库,适用于高性能计算,并具有内存速度。它支持内存、磁盘和Intel Optane作为活动存储层。
-
多级存储: Apache Ignite能够使用DRAM和Intel® Optane™ Memory Mode进行数据存储和处理。磁盘层是可选的,支持将数据持久化到外部数据库或使用Ignite原生持久化。SSD、Flash、HDD或Intel Optane AppDirect Mode可以作为存储设备。
-
Ignite原生持久化: 尽管Apache Ignite通常用作外部数据库上的缓存层,但它带有自己的原生持久化功能,这是一种分布式、ACID兼容、符合SQL的磁盘存储。原生持久化集成到Ignite的多级存储中作为磁盘层,可以存储比内存缓存更多的数据,并支持快速集群重启。
-
ACID兼容性: 在Ignite中存储的数据在内存和磁盘上的数据都是ACID兼容的,这使得Ignite成为一个强一致性系统。Ignite事务可以在网络上工作,并跨越多个服务器。
-
ANSI SQL支持: Apache Ignite带有一个ANSI-99兼容的、水平可扩展的、容错性的SQL引擎,允许您通过JDBC、ODBC驱动程序或Java、C#、C++、Python等编程语言的本地SQL API与Ignite进行交互。Ignite支持所有DML命令,包括SELECT、UPDATE、INSERT和DELETE查询,以及适用于分布式系统的DDL命令子集。
-
高性能计算: 使用Apache Ignite作为高性能计算集群,可以将一组商用机器或云环境转变为一个由相互连接的Ignite节点组成的分布式超级计算机。Ignite通过在内存中处理记录并减少网络利用来实现速度和规模,其API实现了MapReduce范式,允许在节点集群上运行任意任务。
3. 项目API使用文档
Apache Ignite提供了多种语言的API,以下是一些主要API的简要说明:
- Java API: 用于在Java应用程序中与Ignite交互的API。
- .NET API: 用于.NET应用程序的API。
- C++ API: 用于C++应用程序的API。
具体使用方法,请参考Apache Ignite官方技术文档。
4. 项目安装方式
除了从官方网站下载二进制发行包外,您还可以通过以下方式安装Apache Ignite:
- Maven: 在您的
pom.xml
文件中添加以下依赖项。
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-core</artifactId>
<version>最新版本</version>
</dependency>
- Gradle: 在您的
build.gradle
文件中添加以下依赖项。
dependencies {
implementation 'org.apache.ignite:ignite-core:最新版本'
}
请将最新版本
替换为Apache Ignite的最新版本号。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









