Apache Ignite 技术文档
1. 安装指南
Apache Ignite 的安装需要Java环境。请确保您的系统已安装Java 8或更高版本。以下是安装Apache Ignite的步骤:
- 从Apache Ignite官方网站下载二进制发行包。
- 解压下载的文件到所选目录。
- 配置环境变量,将
IGNITE_HOME设置为解压目录的路径,并将%IGNITE_HOME%\bin添加到系统路径(对于Windows系统)或$IGNITE_HOME/bin添加到PATH环境变量(对于Unix系统)。
2. 项目使用说明
Apache Ignite是一个分布式数据库,适用于高性能计算,并具有内存速度。它支持内存、磁盘和Intel Optane作为活动存储层。
-
多级存储: Apache Ignite能够使用DRAM和Intel® Optane™ Memory Mode进行数据存储和处理。磁盘层是可选的,支持将数据持久化到外部数据库或使用Ignite原生持久化。SSD、Flash、HDD或Intel Optane AppDirect Mode可以作为存储设备。
-
Ignite原生持久化: 尽管Apache Ignite通常用作外部数据库上的缓存层,但它带有自己的原生持久化功能,这是一种分布式、ACID兼容、符合SQL的磁盘存储。原生持久化集成到Ignite的多级存储中作为磁盘层,可以存储比内存缓存更多的数据,并支持快速集群重启。
-
ACID兼容性: 在Ignite中存储的数据在内存和磁盘上的数据都是ACID兼容的,这使得Ignite成为一个强一致性系统。Ignite事务可以在网络上工作,并跨越多个服务器。
-
ANSI SQL支持: Apache Ignite带有一个ANSI-99兼容的、水平可扩展的、容错性的SQL引擎,允许您通过JDBC、ODBC驱动程序或Java、C#、C++、Python等编程语言的本地SQL API与Ignite进行交互。Ignite支持所有DML命令,包括SELECT、UPDATE、INSERT和DELETE查询,以及适用于分布式系统的DDL命令子集。
-
高性能计算: 使用Apache Ignite作为高性能计算集群,可以将一组商用机器或云环境转变为一个由相互连接的Ignite节点组成的分布式超级计算机。Ignite通过在内存中处理记录并减少网络利用来实现速度和规模,其API实现了MapReduce范式,允许在节点集群上运行任意任务。
3. 项目API使用文档
Apache Ignite提供了多种语言的API,以下是一些主要API的简要说明:
- Java API: 用于在Java应用程序中与Ignite交互的API。
- .NET API: 用于.NET应用程序的API。
- C++ API: 用于C++应用程序的API。
具体使用方法,请参考Apache Ignite官方技术文档。
4. 项目安装方式
除了从官方网站下载二进制发行包外,您还可以通过以下方式安装Apache Ignite:
- Maven: 在您的
pom.xml文件中添加以下依赖项。
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-core</artifactId>
<version>最新版本</version>
</dependency>
- Gradle: 在您的
build.gradle文件中添加以下依赖项。
dependencies {
implementation 'org.apache.ignite:ignite-core:最新版本'
}
请将最新版本替换为Apache Ignite的最新版本号。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00