Apache Ignite 技术文档
1. 安装指南
Apache Ignite 的安装需要Java环境。请确保您的系统已安装Java 8或更高版本。以下是安装Apache Ignite的步骤:
- 从Apache Ignite官方网站下载二进制发行包。
- 解压下载的文件到所选目录。
- 配置环境变量,将
IGNITE_HOME设置为解压目录的路径,并将%IGNITE_HOME%\bin添加到系统路径(对于Windows系统)或$IGNITE_HOME/bin添加到PATH环境变量(对于Unix系统)。
2. 项目使用说明
Apache Ignite是一个分布式数据库,适用于高性能计算,并具有内存速度。它支持内存、磁盘和Intel Optane作为活动存储层。
-
多级存储: Apache Ignite能够使用DRAM和Intel® Optane™ Memory Mode进行数据存储和处理。磁盘层是可选的,支持将数据持久化到外部数据库或使用Ignite原生持久化。SSD、Flash、HDD或Intel Optane AppDirect Mode可以作为存储设备。
-
Ignite原生持久化: 尽管Apache Ignite通常用作外部数据库上的缓存层,但它带有自己的原生持久化功能,这是一种分布式、ACID兼容、符合SQL的磁盘存储。原生持久化集成到Ignite的多级存储中作为磁盘层,可以存储比内存缓存更多的数据,并支持快速集群重启。
-
ACID兼容性: 在Ignite中存储的数据在内存和磁盘上的数据都是ACID兼容的,这使得Ignite成为一个强一致性系统。Ignite事务可以在网络上工作,并跨越多个服务器。
-
ANSI SQL支持: Apache Ignite带有一个ANSI-99兼容的、水平可扩展的、容错性的SQL引擎,允许您通过JDBC、ODBC驱动程序或Java、C#、C++、Python等编程语言的本地SQL API与Ignite进行交互。Ignite支持所有DML命令,包括SELECT、UPDATE、INSERT和DELETE查询,以及适用于分布式系统的DDL命令子集。
-
高性能计算: 使用Apache Ignite作为高性能计算集群,可以将一组商用机器或云环境转变为一个由相互连接的Ignite节点组成的分布式超级计算机。Ignite通过在内存中处理记录并减少网络利用来实现速度和规模,其API实现了MapReduce范式,允许在节点集群上运行任意任务。
3. 项目API使用文档
Apache Ignite提供了多种语言的API,以下是一些主要API的简要说明:
- Java API: 用于在Java应用程序中与Ignite交互的API。
- .NET API: 用于.NET应用程序的API。
- C++ API: 用于C++应用程序的API。
具体使用方法,请参考Apache Ignite官方技术文档。
4. 项目安装方式
除了从官方网站下载二进制发行包外,您还可以通过以下方式安装Apache Ignite:
- Maven: 在您的
pom.xml文件中添加以下依赖项。
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-core</artifactId>
<version>最新版本</version>
</dependency>
- Gradle: 在您的
build.gradle文件中添加以下依赖项。
dependencies {
implementation 'org.apache.ignite:ignite-core:最新版本'
}
请将最新版本替换为Apache Ignite的最新版本号。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00