PEFT微调Gemma模型时训练损失NaN问题的分析与解决
2025-05-12 17:01:42作者:盛欣凯Ernestine
问题背景
在使用Hugging Face的PEFT(Parameter-Efficient Fine-Tuning)库对Gemma 7B模型进行4位量化微调时,开发者遇到了训练过程中损失值变为NaN的问题。具体表现为:训练初期损失值正常下降,但经过几个训练步骤后突然变为NaN,同时验证损失也显示为NaN。
技术细节分析
该问题出现在以下技术配置环境中:
- 模型量化配置:使用4位NF(正态浮点)量化类型,计算数据类型为bfloat16
- LoRA适配器配置:针对q_proj、v_proj、embed_tokens和lm_head模块进行适配
- 词汇表扩展:通过扩展SentencePiece模型而非标准add_tokens方法增加新词元
- 训练参数:使用paged_adamw_8bit优化器,学习率2e-4,bf16精度训练
可能原因分析
- 数值精度问题:在4位量化基础上使用bfloat16可能导致数值精度不足,梯度计算时出现数值下溢或上溢
- 新词元初始化:将所有新词元的嵌入权重初始化为零可能造成训练不稳定
- 混合精度训练:bf16与4位量化的组合可能引入数值不稳定性
- 梯度检查点:启用的梯度检查点功能可能与量化训练存在兼容性问题
解决方案
PEFT核心开发者Benjamin Bossan提出的解决方案是:
model = get_peft_model(...)
# 将所有可训练参数转换为float32精度
for param in model.parameters():
if param.requires_grad:
param.data = param.data.float()
这一方案的关键点在于:
- 精度提升:将LoRA适配器的可训练参数从量化/低精度状态转换为float32,确保训练稳定性
- 选择性转换:仅转换需要梯度的参数,保持其他参数的量化状态,平衡精度与效率
- 兼容性保持:不影响原始量化模型的推理效率,仅在训练阶段使用更高精度
最佳实践建议
- 渐进式词汇表扩展:考虑使用更温和的新词元初始化策略,如小随机数初始化而非全零
- 精度监控:在训练初期添加梯度范数监控,提前发现数值不稳定迹象
- 学习率调整:对于量化模型,可能需要更保守的学习率策略
- 混合精度配置:可以尝试禁用bf16或使用更稳定的混合精度组合
结论
在PEFT框架下微调大型量化语言模型时,数值精度管理是关键挑战。通过将适配器参数临时提升到float32精度,可以在保持模型整体量化效率的同时,确保训练过程的数值稳定性。这一解决方案既保留了PEFT的参数效率优势,又解决了量化训练中的数值不稳定问题,为类似场景提供了可靠的技术路径。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++094AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
193
2.16 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
972
573

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
548
77

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
206
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17