PEFT微调Gemma模型时训练损失NaN问题的分析与解决
2025-05-12 16:37:31作者:盛欣凯Ernestine
问题背景
在使用Hugging Face的PEFT(Parameter-Efficient Fine-Tuning)库对Gemma 7B模型进行4位量化微调时,开发者遇到了训练过程中损失值变为NaN的问题。具体表现为:训练初期损失值正常下降,但经过几个训练步骤后突然变为NaN,同时验证损失也显示为NaN。
技术细节分析
该问题出现在以下技术配置环境中:
- 模型量化配置:使用4位NF(正态浮点)量化类型,计算数据类型为bfloat16
- LoRA适配器配置:针对q_proj、v_proj、embed_tokens和lm_head模块进行适配
- 词汇表扩展:通过扩展SentencePiece模型而非标准add_tokens方法增加新词元
- 训练参数:使用paged_adamw_8bit优化器,学习率2e-4,bf16精度训练
可能原因分析
- 数值精度问题:在4位量化基础上使用bfloat16可能导致数值精度不足,梯度计算时出现数值下溢或上溢
- 新词元初始化:将所有新词元的嵌入权重初始化为零可能造成训练不稳定
- 混合精度训练:bf16与4位量化的组合可能引入数值不稳定性
- 梯度检查点:启用的梯度检查点功能可能与量化训练存在兼容性问题
解决方案
PEFT核心开发者Benjamin Bossan提出的解决方案是:
model = get_peft_model(...)
# 将所有可训练参数转换为float32精度
for param in model.parameters():
if param.requires_grad:
param.data = param.data.float()
这一方案的关键点在于:
- 精度提升:将LoRA适配器的可训练参数从量化/低精度状态转换为float32,确保训练稳定性
- 选择性转换:仅转换需要梯度的参数,保持其他参数的量化状态,平衡精度与效率
- 兼容性保持:不影响原始量化模型的推理效率,仅在训练阶段使用更高精度
最佳实践建议
- 渐进式词汇表扩展:考虑使用更温和的新词元初始化策略,如小随机数初始化而非全零
- 精度监控:在训练初期添加梯度范数监控,提前发现数值不稳定迹象
- 学习率调整:对于量化模型,可能需要更保守的学习率策略
- 混合精度配置:可以尝试禁用bf16或使用更稳定的混合精度组合
结论
在PEFT框架下微调大型量化语言模型时,数值精度管理是关键挑战。通过将适配器参数临时提升到float32精度,可以在保持模型整体量化效率的同时,确保训练过程的数值稳定性。这一解决方案既保留了PEFT的参数效率优势,又解决了量化训练中的数值不稳定问题,为类似场景提供了可靠的技术路径。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1