ADGAT 项目使用教程
2024-09-24 14:35:52作者:龚格成
1. 项目介绍
ADGAT(Attribute-Driven Graph Attention Networks)是一个用于股票预测的模型,通过建模动量溢出效应来预测股票价格。该项目基于图注意力网络(Graph Attention Networks, GAT),并引入了属性驱动的机制,以提高预测的准确性。
主要特点
- 动量溢出效应建模:通过分析股票之间的动量溢出效应,提高预测精度。
- 属性驱动:结合股票的属性信息,增强模型的表现。
- 图注意力网络:利用图注意力网络处理股票之间的复杂关系。
2. 项目快速启动
环境准备
- Python 3.7.6
- PyTorch 1.5.1
安装依赖
pip install -r requirements.txt
数据准备
- 下载交易数据:从 Google Drive 下载原始市场数据。
- 预处理数据:参考
rawdata/marketdata_preprocessing.ipynb进行数据预处理。
运行模型
python main.py --device=0
3. 应用案例和最佳实践
应用案例
ADGAT 模型可以应用于金融领域的股票预测,特别是在需要考虑股票之间复杂关系的场景中。例如,预测某只股票的未来价格时,可以结合其相关股票的动量溢出效应进行分析。
最佳实践
- 数据预处理:确保数据预处理步骤严格按照
rawdata/marketdata_preprocessing.ipynb进行,以保证数据质量。 - 模型调优:根据具体应用场景,调整模型参数以获得最佳预测效果。
- 结果分析:使用模型输出的预测结果进行详细分析,验证模型的有效性。
4. 典型生态项目
相关项目
- PyTorch Geometric:一个用于处理图结构数据的 PyTorch 扩展库,ADGAT 模型中使用了该库的部分功能。
- DGL (Deep Graph Library):另一个用于图神经网络的库,可以作为 ADGAT 的替代或补充工具。
集成建议
- 与 PyTorch Geometric 集成:利用 PyTorch Geometric 提供的图数据处理功能,增强 ADGAT 模型的数据处理能力。
- 与 DGL 集成:通过 DGL 提供的图神经网络功能,扩展 ADGAT 模型的应用场景。
通过以上步骤,您可以快速启动并应用 ADGAT 项目,结合相关生态项目,进一步提升模型的性能和应用范围。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251