MST++ 开源项目使用教程
2024-08-15 12:58:59作者:韦蓉瑛
1. 项目的目录结构及介绍
MST++ 项目的目录结构如下:
MST-plus-plus/
├── dataset/
│ ├── Train_Spec/
│ ├── Train_RGB/
│ ├── Test_RGB/
├── requirements.txt
├── README.md
├── ...
目录结构介绍
dataset/
: 包含训练和测试数据集的目录。Train_Spec/
: 存放训练用光谱图像。Train_RGB/
: 存放训练用RGB图像。Test_RGB/
: 存放测试用RGB图像。
requirements.txt
: 项目依赖的Python包列表。README.md
: 项目说明文档。
2. 项目的启动文件介绍
MST++ 项目的启动文件通常是主脚本文件,用于启动训练或测试过程。具体文件名可能因版本更新而有所变化,但通常可以在项目根目录下找到。
启动文件示例
# main.py
import argparse
from models import MSTPlusPlus
from utils import load_dataset, train, evaluate
def main():
parser = argparse.ArgumentParser(description="MST++ Training and Evaluation")
parser.add_argument('--mode', type=str, default='train', help='train or evaluate')
parser.add_argument('--config', type=str, default='config.yaml', help='path to config file')
args = parser.parse_args()
config = load_config(args.config)
model = MSTPlusPlus(config)
if args.mode == 'train':
train(model, config)
elif args.mode == 'evaluate':
evaluate(model, config)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
MST++ 项目的配置文件通常是一个 YAML 或 JSON 文件,用于存储模型训练和评估的参数。
配置文件示例
# config.yaml
train:
batch_size: 32
epochs: 100
learning_rate: 0.001
data_path: "dataset/Train_RGB"
eval:
batch_size: 16
data_path: "dataset/Test_RGB"
model:
input_channels: 3
output_channels: 31
...
配置文件介绍
train
: 训练相关参数。batch_size
: 批大小。epochs
: 训练轮数。learning_rate
: 学习率。data_path
: 训练数据路径。
eval
: 评估相关参数。batch_size
: 批大小。data_path
: 测试数据路径。
model
: 模型相关参数。input_channels
: 输入通道数。output_channels
: 输出通道数。
以上是 MST++ 开源项目的使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
54
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27