ZITS_inpainting 项目使用教程
2024-09-24 09:22:18作者:齐冠琰
1. 项目介绍
ZITS_inpainting 是一个基于增量 Transformer 结构增强的图像修复项目,由 Qiaole Dong、Chenjie Cao 和 Yanwei Fu 开发。该项目在 CVPR 2022 上发表,主要用于修复图像中的缺失部分。项目通过使用 Masking Positional Encoding 技术,能够有效地恢复图像的结构和纹理。
主要特点
- 增量 Transformer 结构:通过增量 Transformer 结构增强图像修复效果。
- Masking Positional Encoding:使用 Masking Positional Encoding 技术来提高图像修复的精度。
- 多阶段处理:项目分为多个阶段,包括结构恢复、边缘和线条的上采样以及纹理恢复。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 3.6 和 PyTorch 1.9.0。你可以通过以下命令创建并激活虚拟环境:
conda create -n train_env python=3.6
conda activate train_env
安装 PyTorch 和其他依赖:
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirement.txt
克隆项目仓库并安装 Apex:
git clone https://github.com/DQiaole/ZITS_inpainting.git
cd ZITS_inpainting
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --no-build-isolation
数据准备
下载预训练模型和测试数据:
mkdir -p ckpt
wget -P ckpt https://path_to_pretrained_model/model.pth
单张图像测试
使用以下命令对单张图像进行测试:
conda activate train_env
python single_image_test.py --path ckpt/model.pth --config_file config_list/config_ZITS_places2.yml --GPU_ids '0' --img_path /path/to/image.png --mask_path /path/to/mask.png --save_path /path/to/save/result.png
3. 应用案例和最佳实践
应用案例
ZITS_inpainting 可以广泛应用于以下场景:
- 图像修复:修复老照片中的损坏部分。
- 图像编辑:在图像编辑软件中自动修复用户删除的区域。
- 医学图像处理:修复医学图像中的噪声或缺失部分。
最佳实践
- 数据预处理:确保输入图像和掩码的质量,以获得最佳修复效果。
- 模型选择:根据不同的应用场景选择合适的预训练模型。
- 参数调优:根据具体需求调整配置文件中的参数,以优化修复效果。
4. 典型生态项目
相关项目
- MST:用于生成不规则和分割掩码的工具。
- LaMa:提供感知损失的预训练模型。
- HAWP:用于检测图像中的边缘和线条。
这些项目与 ZITS_inpainting 结合使用,可以进一步提升图像修复的效果和应用范围。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
231
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
598
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.53 K