ProTrek 使用与启动教程
2025-04-18 11:48:54作者:董宙帆
1. 项目介绍
ProTrek 是一个基于对比学习的三模态蛋白质语言模型,它联合建模蛋白质序列、结构和功能(SSF)。通过三种核心对齐策略:使用结构作为氨基酸序列的监督信号,反之亦然;序列与功能之间的相互监督;结构与方法之间的相互监督,ProTrek 能够在潜在空间中紧密关联 SSF,将真实样本对(序列-结构、序列-功能、结构-功能)更接近地聚集在一起,同时将负样本推得更远。
ProTrek 在序列-功能检索和功能-序列检索上取得了超过 30 倍和 60 倍的改进,比 Foldseek 和 MMseqs2 在蛋白质-蛋白质搜索中快 100 倍,并在 11 个下游预测任务中的 9 个任务上超过了 ESM-2。
2. 项目快速启动
环境安装
首先,创建一个虚拟环境:
conda create -n protrek python=3.10 --yes
conda activate protrek
然后,克隆仓库并安装所需的包:
bash environment.sh
下载模型权重
ProTrek 提供了不同大小(35M 和 650M)的预训练模型。以下是下载预训练模型权重的示例:
huggingface-cli download westlake-repl/ProTrek_650M_UniRef50 \
--repo-type model \
--local-dir weights/ProTrek_650M_UniRef50
注意:如果您无法访问 huggingface 网站,可以通过设置环境变量 export HF_ENDPOINT=https://hf-mirror.com 来尝试连接镜像站点。
下载 Foldseek 二进制文件
为了正确运行示例并在本地部署您的演示,请首先从提供的链接下载 Foldseek 二进制文件,并将其放入 bin 文件夹中。然后为二进制文件添加执行权限:
chmod +x bin/foldseek
获取嵌入和计算相似度分数
以下是一个如何使用预训练的 ProTrek 模型获取嵌入和计算相似度分数的示例:
import torch
from model.ProTrek.protrek_trimodal_model import ProTrekTrimodalModel
from utils.foldseek_util import get_struc_seq
# 加载模型
config = {
"protein_config": "weights/ProTrek_650M_UniRef50/esm2_t33_650M_UR50D",
"text_config": "weights/ProTrek_650M_UniRef50/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"structure_config": "weights/ProTrek_650M_UniRef50/foldseek_t30_150M",
"load_protein_pretrained": False,
"load_text_pretrained": False,
"from_checkpoint": "weights/ProTrek_650M_UniRef50/ProTrek_650M_UniRef50.pt"
}
device = "cuda"
model = ProTrekTrimodalModel(**config).eval().to(device)
# 加载蛋白质和文本
pdb_path = "example/8ac8.cif"
seqs = get_struc_seq("bin/foldseek", pdb_path, ["A"])["A"]
aa_seq = seqs[0]
foldseek_seq = seqs[1].lower()
text = "复制起始子在单体形式下,以及在二聚体形式下为自抑制因子。"
with torch.no_grad():
# 获取蛋白质序列嵌入
seq_embedding = model.get_protein_repr([aa_seq])
print("蛋白质序列嵌入形状:", seq_embedding.shape)
# 获取蛋白质结构嵌入
struc_embedding = model.get_structure_repr([foldseek_seq])
print("蛋白质结构嵌入形状:", struc_embedding.shape)
# 获取文本嵌入
text_embedding = model.get_text_repr([text])
print("文本嵌入形状:", text_embedding.shape)
# 计算蛋白质序列与结构之间的相似度分数
seq_struc_score = seq_embedding @ struc_embedding.T / model.temperature
print("蛋白质序列与结构之间的相似度分数:", seq_struc_score.item())
# 计算蛋白质序列与文本之间的相似度分数
seq_text_score = seq_embedding @ text_embedding.T / model.temperature
print("蛋白质序列与文本之间的相似度分数:", seq_text_score.item())
# 计算蛋白质结构与文本之间的相似度分数
struc_text_score = struc_embedding @ text_embedding.T / model.temperature
print("蛋白质结构与文本之间的相似度分数:", struc_text_score.item())
3. 应用案例和最佳实践
- 蛋白质序列分析:使用 ProTrek 对蛋白质序列进行嵌入,以便于后续的功能预测和结构分析。
- 蛋白质结构预测:结合序列和文本信息,ProTrek 可以提高蛋白质结构的预测准确性。
- 生物信息学应用:ProTrek 可以被整合到生物信息学工作流程中,用于加速药物发现和疾病研究。
4. 典型生态项目
ProTrek 的应用可以拓展到多个领域,包括但不限于:
- 药物设计:辅助研究人员在药物设计过程中理解蛋白质的功能和结构。
- 疾病标志物发现:通过分析蛋白质序列和结构,有助于发现疾病的生物标志物。
- 基因组学研究:在基因组学研究中,ProTrek 可用于预测基因的功能和蛋白质的结构。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878