Torchmetrics与Sklearn在小型数据集上的精度计算差异分析
2025-07-03 10:02:56作者:咎岭娴Homer
在机器学习模型的评估过程中,准确率(Accuracy)是最常用的指标之一。然而,当使用不同库计算准确率时,即使是相同的预测结果和真实标签,也可能出现微小的数值差异。本文以Torchmetrics项目为例,深入分析这种差异产生的原因及其技术背景。
问题现象
当使用Torchmetrics的Accuracy模块和Sklearn的accuracy_score函数计算同一组预测结果时,虽然理论上应该得到完全相同的准确率值,但实际上出现了微小的差异:
- Torchmetrics计算结果:0.9599999785423279
- Sklearn计算结果:0.96
这种差异在小型数据集(如50个样本)上尤为明显,虽然数值上差异很小,但足以引起开发者的困惑。
技术原理分析
浮点数精度问题
这种差异的根本原因在于计算机处理浮点数时的精度限制。在计算机系统中,浮点数采用IEEE 754标准表示,无法精确表示所有十进制小数。这类似于在Python中计算0.1 + 0.2不会精确等于0.3,而是得到0.30000000000000004。
Torchmetrics的实现机制
Torchmetrics作为PyTorch生态的一部分,其计算过程完全基于PyTorch张量运算。当调用.item()方法将张量转换为Python原生浮点数时,会经历以下转换过程:
- 内部计算保持高精度张量运算
- 使用.item()转换为Python float类型
- 在此转换过程中可能引入微小的精度损失
Sklearn的实现特点
相比之下,Sklearn的accuracy_score函数:
- 直接基于Python原生数值类型计算
- 在结果输出时可能进行了额外的四舍五入处理
- 显示时保留了较少的有效数字
实际影响评估
虽然数值上存在微小差异,但从实际应用角度考虑:
- 这种差异通常在10^-7量级,对模型评估几乎没有实质影响
- 在大型数据集上,这种差异通常会变得更小甚至消失
- 不影响模型比较和选择决策
最佳实践建议
对于需要精确比较的场景,开发者可以采取以下策略:
- 避免直接比较浮点数的相等性,而是设置合理的误差范围
- 在结果展示时统一保留适当的小数位数
- 对于关键指标,考虑使用更高精度的数据类型
- 理解不同库的实现差异,选择最适合当前场景的工具
结论
Torchmetrics和Sklearn在准确率计算上的微小差异是浮点数运算的正常现象,而非软件缺陷。开发者应当理解这种差异的技术背景,在模型评估和比较时采取适当的处理策略。对于绝大多数实际应用场景,这种差异不会影响模型评估的有效性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133