Torchmetrics与Sklearn在小型数据集上的精度计算差异分析
2025-07-03 20:13:03作者:咎岭娴Homer
在机器学习模型的评估过程中,准确率(Accuracy)是最常用的指标之一。然而,当使用不同库计算准确率时,即使是相同的预测结果和真实标签,也可能出现微小的数值差异。本文以Torchmetrics项目为例,深入分析这种差异产生的原因及其技术背景。
问题现象
当使用Torchmetrics的Accuracy模块和Sklearn的accuracy_score函数计算同一组预测结果时,虽然理论上应该得到完全相同的准确率值,但实际上出现了微小的差异:
- Torchmetrics计算结果:0.9599999785423279
- Sklearn计算结果:0.96
这种差异在小型数据集(如50个样本)上尤为明显,虽然数值上差异很小,但足以引起开发者的困惑。
技术原理分析
浮点数精度问题
这种差异的根本原因在于计算机处理浮点数时的精度限制。在计算机系统中,浮点数采用IEEE 754标准表示,无法精确表示所有十进制小数。这类似于在Python中计算0.1 + 0.2不会精确等于0.3,而是得到0.30000000000000004。
Torchmetrics的实现机制
Torchmetrics作为PyTorch生态的一部分,其计算过程完全基于PyTorch张量运算。当调用.item()方法将张量转换为Python原生浮点数时,会经历以下转换过程:
- 内部计算保持高精度张量运算
- 使用.item()转换为Python float类型
- 在此转换过程中可能引入微小的精度损失
Sklearn的实现特点
相比之下,Sklearn的accuracy_score函数:
- 直接基于Python原生数值类型计算
- 在结果输出时可能进行了额外的四舍五入处理
- 显示时保留了较少的有效数字
实际影响评估
虽然数值上存在微小差异,但从实际应用角度考虑:
- 这种差异通常在10^-7量级,对模型评估几乎没有实质影响
- 在大型数据集上,这种差异通常会变得更小甚至消失
- 不影响模型比较和选择决策
最佳实践建议
对于需要精确比较的场景,开发者可以采取以下策略:
- 避免直接比较浮点数的相等性,而是设置合理的误差范围
- 在结果展示时统一保留适当的小数位数
- 对于关键指标,考虑使用更高精度的数据类型
- 理解不同库的实现差异,选择最适合当前场景的工具
结论
Torchmetrics和Sklearn在准确率计算上的微小差异是浮点数运算的正常现象,而非软件缺陷。开发者应当理解这种差异的技术背景,在模型评估和比较时采取适当的处理策略。对于绝大多数实际应用场景,这种差异不会影响模型评估的有效性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120