Apache SkyWalking Booster-UI中D3追踪图显示不完整问题分析
问题背景
在Apache SkyWalking的可观测性平台中,Booster-UI组件负责展示追踪数据。近期发现当追踪数据包含多个引用关系(refs)时,使用D3.js渲染的追踪图会出现显示不完整的问题。这个问题特别容易在RocketMQ等消息队列场景中出现,因为这些场景通常会生成包含多个跨进程引用的追踪数据。
问题现象
当追踪数据满足以下条件时会出现显示问题:
- 追踪包含多个span
- 这些span之间存在引用关系(refs)
- 特别是当有多个消费者-生产者模式的消息传递时
具体表现为D3渲染的SVG图形底部被截断,无法完整显示所有span节点。从技术实现来看,这是因为SVG容器的初始高度计算没有考虑引用节点的空间需求。
技术分析
当前实现的问题
当前代码中SVG容器高度的计算方式存在两个主要问题:
-
高度计算不完整:仅基于span数量计算高度,公式为
(span数量+1)*48
。例如9个span计算得到480px高度。 -
调整不足:在已有计算基础上仅增加20px的调整量(变为500px),这对于包含多个ref的追踪远远不够。
正确的计算方式
正确的计算应该考虑:
- 基础span数量
- 引用关系(refs)带来的额外节点
- 必要的边距
修正后的计算公式应为:(span数量 + ref数量 + 1) * 节点高度(48px)
。以示例中的9个span和5个ref为例,正确高度应为720px。
影响范围
这个问题主要影响:
- 消息队列场景(RocketMQ、Kafka等)的追踪展示
- 复杂的分布式事务追踪
- 任何包含多个跨进程引用的追踪场景
解决方案建议
修复方案需要修改D3Graph组件的实现,主要调整点包括:
-
完善节点计数:在计算总高度时,需要统计所有span节点和ref节点。
-
动态高度调整:根据实际节点类型和数量动态计算所需高度,而不是使用固定增量。
-
响应式设计:确保在不同屏幕尺寸下都能正确显示完整图形。
总结
Apache SkyWalking Booster-UI中的这个问题虽然看似是简单的显示问题,但实际上反映了在复杂分布式系统追踪可视化中的一个常见挑战 - 如何准确计算和分配可视化元素的空间。特别是在消息队列等异步通信场景中,引用关系的正确处理对于准确展示系统行为至关重要。
这个问题的修复不仅能改善RocketMQ场景下的追踪展示,也将提升所有包含复杂引用关系的追踪数据的可视化效果,使开发者能够更全面地理解分布式系统的运行状况。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









