scGPT 项目使用教程
2024-09-21 09:19:13作者:裘旻烁
1. 项目介绍
scGPT 是一个基于生成式预训练变压器(Generative Pre-trained Transformer)的基础模型,旨在利用大量单细胞数据构建单细胞多组学的基础模型。该项目通过在超过3300万个细胞的数据库上构建生成式预训练变压器,有效地提取了基因和细胞的关键生物学见解。scGPT 可以进一步通过迁移学习进行优化,以在各种下游应用中实现卓越的性能,包括细胞类型注释、多批次整合、多组学整合、扰动响应预测和基因网络推断等。
2. 项目快速启动
2.1 安装
scGPT 支持 Python >= 3.7.13 和 R >= 3.6.1。请确保在安装前已安装正确的 Python 和 R 版本。scGPT 可以通过 PyPI 安装,运行以下命令:
pip install scgpt "flash-attn<1.0.5" # 可选,推荐
如果遇到与 Google orbax 包相关的问题,可以使用以下命令:
pip install scgpt "flash-attn<1.0.5" "orbax<0.1.8"
2.2 快速使用
以下是一个简单的示例代码,展示如何加载预训练模型并进行推理:
import scgpt as sc
# 加载预训练模型
model = sc.load_pretrained("path_to_ckpt.pt")
# 进行推理
result = model.predict(input_data)
print(result)
3. 应用案例和最佳实践
3.1 细胞类型注释
scGPT 在细胞类型注释任务中表现出色。以下是一个使用 scGPT 进行细胞类型注释的示例:
import scgpt as sc
# 加载预训练模型
model = sc.load_pretrained("path_to_ckpt.pt")
# 加载数据
data = sc.load_data("path_to_data.h5ad")
# 进行细胞类型注释
annotations = model.annotate_cells(data)
print(annotations)
3.2 多批次整合
scGPT 还可以用于多批次数据的整合。以下是一个示例代码:
import scgpt as sc
# 加载预训练模型
model = sc.load_pretrained("path_to_ckpt.pt")
# 加载多批次数据
data_batch1 = sc.load_data("path_to_batch1.h5ad")
data_batch2 = sc.load_data("path_to_batch2.h5ad")
# 进行多批次整合
integrated_data = model.integrate_batches([data_batch1, data_batch2])
print(integrated_data)
4. 典型生态项目
4.1 Scanpy
Scanpy 是一个用于单细胞基因表达数据分析的 Python 库,scGPT 可以与 Scanpy 结合使用,以增强数据分析能力。
4.2 scvi-tools
scvi-tools 是一个用于单细胞数据分析的工具包,支持多种单细胞数据分析任务,scGPT 可以与 scvi-tools 结合使用,以提高数据处理效率。
4.3 CellxGene
CellxGene 是一个用于探索和共享单细胞数据的交互式平台,scGPT 的分析结果可以导入 CellxGene 进行进一步的可视化和分析。
通过以上模块的介绍和示例代码,您可以快速上手使用 scGPT 项目,并了解其在单细胞多组学分析中的应用。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287