scGPT 项目使用教程
2024-09-21 23:03:38作者:裘旻烁
1. 项目介绍
scGPT 是一个基于生成式预训练变压器(Generative Pre-trained Transformer)的基础模型,旨在利用大量单细胞数据构建单细胞多组学的基础模型。该项目通过在超过3300万个细胞的数据库上构建生成式预训练变压器,有效地提取了基因和细胞的关键生物学见解。scGPT 可以进一步通过迁移学习进行优化,以在各种下游应用中实现卓越的性能,包括细胞类型注释、多批次整合、多组学整合、扰动响应预测和基因网络推断等。
2. 项目快速启动
2.1 安装
scGPT 支持 Python >= 3.7.13 和 R >= 3.6.1。请确保在安装前已安装正确的 Python 和 R 版本。scGPT 可以通过 PyPI 安装,运行以下命令:
pip install scgpt "flash-attn<1.0.5" # 可选,推荐
如果遇到与 Google orbax 包相关的问题,可以使用以下命令:
pip install scgpt "flash-attn<1.0.5" "orbax<0.1.8"
2.2 快速使用
以下是一个简单的示例代码,展示如何加载预训练模型并进行推理:
import scgpt as sc
# 加载预训练模型
model = sc.load_pretrained("path_to_ckpt.pt")
# 进行推理
result = model.predict(input_data)
print(result)
3. 应用案例和最佳实践
3.1 细胞类型注释
scGPT 在细胞类型注释任务中表现出色。以下是一个使用 scGPT 进行细胞类型注释的示例:
import scgpt as sc
# 加载预训练模型
model = sc.load_pretrained("path_to_ckpt.pt")
# 加载数据
data = sc.load_data("path_to_data.h5ad")
# 进行细胞类型注释
annotations = model.annotate_cells(data)
print(annotations)
3.2 多批次整合
scGPT 还可以用于多批次数据的整合。以下是一个示例代码:
import scgpt as sc
# 加载预训练模型
model = sc.load_pretrained("path_to_ckpt.pt")
# 加载多批次数据
data_batch1 = sc.load_data("path_to_batch1.h5ad")
data_batch2 = sc.load_data("path_to_batch2.h5ad")
# 进行多批次整合
integrated_data = model.integrate_batches([data_batch1, data_batch2])
print(integrated_data)
4. 典型生态项目
4.1 Scanpy
Scanpy 是一个用于单细胞基因表达数据分析的 Python 库,scGPT 可以与 Scanpy 结合使用,以增强数据分析能力。
4.2 scvi-tools
scvi-tools 是一个用于单细胞数据分析的工具包,支持多种单细胞数据分析任务,scGPT 可以与 scvi-tools 结合使用,以提高数据处理效率。
4.3 CellxGene
CellxGene 是一个用于探索和共享单细胞数据的交互式平台,scGPT 的分析结果可以导入 CellxGene 进行进一步的可视化和分析。
通过以上模块的介绍和示例代码,您可以快速上手使用 scGPT 项目,并了解其在单细胞多组学分析中的应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895