Shelf.nu 1.16.4版本发布:资产管理系统的重要功能升级
Shelf.nu是一款开源的资产管理系统,专门用于帮助团队高效管理物理资产、设备和工具。该系统提供了从资产跟踪、预约管理到库存控制等一系列功能,特别适合需要共享资源的团队和组织使用。
核心功能增强
预约时间缓冲机制
新版本引入了预约开始时间缓冲功能,这是一个非常实用的改进。在实际工作场景中,用户经常需要为设备准备或交接预留时间。例如,当用户预约使用某台摄像机时,可能需要提前15分钟进行设备检查和设置。这个缓冲时间功能允许系统管理员配置默认的缓冲时间,确保设备在正式使用前有足够的准备时间。
用户联系信息管理
系统现在支持更完善的用户联系信息管理。管理员可以记录和维护用户的详细联系方式,这对于设备交接、问题沟通和紧急情况联系都至关重要。该功能设计考虑了数据隐私,确保只有授权人员才能访问敏感联系信息。
套件可用性视图
针对包含多个组件的设备套件,新版本提供了专门的可用性视图。这个功能解决了套件管理中常见的痛点:当套件中的某个组件被单独借出时,整个套件的可用状态会变得不明确。新的可用性视图直观展示了套件中各组件的状态,帮助用户快速判断套件是否完整可用。
资产可用性管理改进
资产可用性状态优化
系统对资产可用性状态管理进行了重要改进。现在可以更精确地反映资产的实际可用状态,包括:
- 维护中状态
- 已预约状态
- 可用状态
- 损坏状态
这种细化的状态管理大大减少了因状态不明确导致的预约冲突,提高了资产利用率。
批量操作功能
在资产预约管理界面新增了批量操作功能,这是对工作效率的显著提升。管理员现在可以:
- 批量修改资产状态
- 批量分配资产给特定预约
- 批量更新资产位置信息
- 批量导出资产信息
这个功能特别适合需要同时处理多个资产的大型组织或活动场景。
技术优化与问题修复
邮件传输配置改进
对邮件传输配置进行了多项优化,特别是端口和安全属性的处理更加健壮。系统现在能够:
- 自动识别默认端口
- 正确处理安全连接配置
- 提供更清晰的配置错误提示
- 支持更广泛的邮件服务提供商
这些改进显著提高了系统通知邮件的送达率。
日历功能增强
日历视图进行了多项用户体验优化:
- 添加了当前时间指示器,帮助用户快速定位
- 改进了时间块的视觉区分
- 优化了预约冲突提示
- 提升了响应速度
这些改进使预约管理更加直观高效。
图像处理稳定性提升
系统改进了资产图片的处理流程,包括:
- 更完善的错误日志记录
- 更稳定的缩略图生成
- 更高效的图片刷新机制
- 更好的异常处理
这些改进确保了资产图片的可靠显示和管理。
系统集成与数据管理
Stripe支付集成增强
加强了与Stripe支付系统的集成,确保客户ID的创建更加可靠。这一改进解决了订阅和支付过程中的一些边缘情况问题,使支付流程更加顺畅。
组织初始化优化
新创建的组织现在会自动获得默认的预约设置配置,避免了管理员需要手动设置的麻烦。这个改进简化了系统初始配置流程,使新用户能够更快开始使用系统。
总结
Shelf.nu 1.16.4版本带来了多项实用功能和重要改进,特别是在资产可用性管理、批量操作和系统稳定性方面。这些更新使系统更适合中大型团队使用,能够更好地处理复杂的资产管理需求。对于现有用户,建议尽快升级以利用这些新功能;对于新用户,这个版本提供了更完整和稳定的功能集,是开始使用的好时机。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00