tritonparse 的项目扩展与二次开发
2025-06-25 21:56:22作者:秋泉律Samson
项目的基础介绍
tritonparse 是一个开源项目,旨在帮助开发者分析和调试 Triton 内核,通过可视化编译过程和源代码映射来提高开发效率。这个工具特别适用于那些需要在深度学习编译过程中进行内核分析的开发者,尤其是那些使用 PyTorch 和 Triton 进行高性能计算的用户。
项目的核心功能
tritonparse 的核心功能包括:
- 可视化分析:提供交互式的内核探索器,显示详细的内核信息和堆栈跟踪。
- 多格式 IR 支持:支持多种 Triton IR 格式,如 TTGIR、TTIR、LLIR、PTX 和 AMDGCN。
- 并行比较:可以并排比较不同的 IR 代码,并进行同步高亮显示。
- 交互式代码视图:点击可在不同格式间高亮对应的代码行。
- 结构化日志记录:捕获详细的 Triton 编译事件,并提供 Python 堆栈跟踪。
- 元数据提取:提供全面的内核元数据和编译统计信息。
- NDJSON 输出:使用结构化日志格式以便于后续处理。
项目使用了哪些框架或库?
该项目主要使用了以下框架和库:
- 前端:React 19 配合 TypeScript,使用 Vite 作为构建工具,Tailwind CSS 进行样式设计,Monaco Editor 显示代码,React Syntax Highlighter 进行语法高亮,React Resizable Panels 实现布局。
- 后端/处理:Python 集成了 Triton,使用结构化日志记录和事件跟踪,源映射提取工具。
项目的代码目录及介绍
项目的代码目录结构如下:
tritonparse/
├── tritonparse/ # Python 包
│ ├── structured_logging.py # 主日志基础设施
│ ├── extract_source_mappings.py # 源映射工具
│ ├── source_type.py # 源类型定义
│ ├── utils.py # 帮助工具
│ ├── common.py # 公共函数
│ └── tp_logger.py # 日志配置
├── website/ # React 网页应用
│ ├── src/ # React 源代码
│ ├── public/ # 静态资源和示例文件
│ ├── scripts/ # 构建工具(inline-html.js)
│ ├── node_modules/ # 依赖项
│ ├── package.json # Node.js 依赖
│ ├── vite.config.ts # Vite 配置
│ └── dist/ # 构建后的应用(构建后)
├── docs/ # 文档和资源
│ ├── README.md # 文档指南
│ └── screenshots/ # README 截图
├── tests/ # 测试文件和示例追踪
│ ├── test_add.py # 示例 Triton 内核测试
│ ├── unit_tests.py # 单元测试
│ └── *.ndjson # 示例追踪文件
├── run.py # 主运行脚本
├── pyproject.toml # Python 包配置
├── LICENSE # BSD-3 许可证
├── CONTRIBUTING.md # 贡献指南
└── CODE_OF_CONDUCT.md # 行为准则
对项目进行扩展或者二次开发的方向
- 功能增强:可以增加对更多 IR 格式的支持,或者增加新的编译事件和元数据的捕获。
- 性能优化:针对现有功能进行性能优化,提高处理大型数据集的能力。
- 用户界面改进:改进前端用户界面,提供更直观和用户友好的交互体验。
- 扩展工具链:集成其他工具或框架,如集成 CI/CD 流程,以便于自动化测试和部署。
- 文档和社区建设:完善项目文档,建立更活跃的开源社区,吸引更多开发者参与项目开发和维护。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92