Apache Parquet Java 使用指南
2026-01-16 10:11:56作者:咎竹峻Karen
项目介绍
Apache Parquet Java 是一个强大的开源列式数据存储格式的Java实现,它设计用于优化大规模数据处理。该格式支持高效的压缩和编码技术,非常适合大数据场景下的存储和检索。Parquet采用了Dremel论文中的记录撕裂和组装算法来表达嵌套结构,因此能够优雅地处理复杂数据模型。通过与多种大数据处理框架如Hadoop、Spark等无缝集成,Parquet成为了数据分析和处理领域的重要组件。
项目快速启动
要快速开始使用Apache Parquet Java,首先确保你的开发环境已经配置了Java SDK。以下是创建并读取Parquet文件的基本步骤:
环境准备
- 添加依赖:在Maven项目中,将以下依赖加入到
pom.xml文件中。<dependencies> <dependency> <groupId>org.apache.parquet</groupId> <artifactId>parquet-hadoop</artifactId> <version>最新版本号</version> <!-- 替换为实际发布的最新版本 --> </dependency> </dependencies>
编写代码示例
创建Parquet文件
import org.apache.hadoop.conf.Configuration;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.SimpleGroupFactory;
import org.apache.parquet.hadoop.ParquetWriter;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
public class QuickStart {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String fileName = "example.parquet";
SimpleGroupFactory groupFactory = new SimpleGroupFactory();
Group root = groupFactory.newGroup("root")
.addGroup("message")
.addInteger("id", 1)
.addString("content", "Hello Parquet!");
ParquetWriter<Group> writer = new ParquetWriter<>(new Path(fileName),
groupFactory.getSchema(root),
CompressionCodecName.GZIP,
true,
new Configuration());
writer.write(root);
writer.close();
}
}
读取Parquet文件
import org.apache.hadoop.conf.Configuration;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.SimpleGroupFactory;
import org.apache.parquet.hadoop.ParquetReader;
public class ReadParquet {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String fileName = "example.parquet";
SimpleGroupFactory factory = new SimpleGroupFactory();
ParquetReader<Group> reader = new ParquetReader<>(new Path(fileName), factory, conf);
Group record;
while ((record = reader.read()) != null) {
System.out.println(record.getInteger("id", 0) + ": " + record.getString("content", 0));
}
reader.close();
}
}
请注意,你需要替换<最新版本号>为你实际检查的最新Apache Parquet Java版本,并且在运行前确认Hadoop相关库也在类路径中。
应用案例和最佳实践
Apache Parquet因其高效的数据存储机制,在大数据分析、流处理、数据仓库等场景下广泛应用。最佳实践中,利用其列式存储特性进行选择性查询(即只读取所需列),可以极大提高I/O效率。此外,合理利用压缩算法和字典编码可以进一步减小存储空间需求,而对数据进行适当的分区和索引则有助于提升查询速度。
典型生态项目
Apache Parquet作为跨语言和平台的数据格式,广泛被多个生态系统采纳,其中一些典型的生态项目包括:
- Apache Spark: 支持Parquet作为一种原生的数据存储格式,广泛应用于批处理和交互式分析任务。
- Apache Hadoop MapReduce: 直接在MapReduce作业中读写Parquet文件,以优化离线处理性能。
- Apache Impala: 高性能SQL引擎,支持直接查询Parquet文件,提供类似传统数据库的用户体验。
- Fastparquet: Python领域的高性能Parquet读写库,适合于Pandas和Dask等框架的用户。
这些工具和框架的结合使用,使得Parquet成为现代大数据架构中的关键组件,支持着从数据湖到数据仓库的多种应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
322
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
247
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885