AIHawk项目:重构代码以支持多招聘平台的架构设计思考
2025-05-06 03:59:23作者:彭桢灵Jeremy
项目背景与挑战
AIHawk是一个自动化求职辅助工具,最初设计仅支持LinkedIn平台。随着项目发展,团队面临如何优雅扩展支持其他招聘平台的技术挑战。本文探讨了该项目的架构重构思路,为类似工具的开发提供参考。
现有架构分析
原始代码采用直接实现方式,LinkedIn相关逻辑直接嵌入主流程中。这种设计存在几个明显问题:
- 平台相关代码与核心逻辑高度耦合
- 添加新平台需要修改多处核心代码
- 不同平台的差异性处理缺乏统一接口
项目目录结构呈现典型的单一平台实现:
src/
└── job_portals/
└── linkedin/
├── job_search/
│ ├── __init__.py
│ ├── job_search.py
│ └── job_page.py
└── easy_apply/
├── __init__.py
└── easy_apply_code.py
重构设计方案
核心抽象接口
重构方案引入了基于抽象基类(ABC)的接口设计,定义了四个关键抽象层:
- WebPage基类:封装基础页面操作
- BaseJobsPage:处理职位列表页相关操作
- BaseJobPage:处理单个职位详情页操作
- BaseApplicationPage:处理申请流程操作
class BaseJobsPage(WebPage):
def next_job_page(self, position, location, page_number):
pass
def job_tile_to_job(self, job_tile: WebElement) -> Job:
pass
def get_jobs_from_page(self, scroll=False) -> List[WebElement]:
pass
平台集成模式
通过工厂模式实现平台插拔:
def get_job_portal(portal_name, driver, parameters):
if portal_name == LINKEDIN:
return LinkedIn(driver, parameters)
else:
raise ValueError(f"Unknown job portal: {portal_name}")
关键交互场景设计
重构方案考虑了招聘自动化工具的所有核心交互场景:
- 平台登录流程:通过Authenticator抽象处理不同平台的认证机制
- 职位搜索:生成平台特定URL,处理分页和结果解析
- 职位转换:将平台特定的UI元素转换为统一的Job对象
- 申请流程:处理多步骤表单的填写和提交
架构优势与考量
该设计提供了几个显著优势:
- 扩展性:新平台只需实现接口,无需修改核心逻辑
- 一致性:不同平台的实现遵循相同模式
- 可维护性:平台相关代码隔离,降低维护成本
同时,设计中也考虑了实际开发中的平衡:
- 提供足够灵活性支持平台差异
- 保持核心流程的一致性
- 避免过度设计导致的复杂性
未来演进方向
基于此架构,项目可进一步优化:
- 增加插件系统,支持第三方平台扩展
- 完善错误处理和重试机制
- 开发平台特性检测系统,自动适配UI变化
- 构建平台兼容性测试套件
这种架构设计不仅适用于AIHawk项目,也可为类似的多平台自动化工具开发提供参考模板。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443