SDV项目中的随机子集采样功能实现解析
2025-06-30 12:47:58作者:明树来
背景与需求
在数据合成领域,SDV(Synthetic Data Vault)是一个强大的工具库,用于生成高质量的合成数据。当处理大规模数据集时,用户经常需要先对数据进行子集采样,以便在保持数据结构完整性的同时减少计算资源消耗。本文深入解析SDV中新增的get_random_subset
功能实现原理。
功能概述
get_random_subset
是一个位于utils.poc
模块中的实用函数,其主要目的是从大规模多表数据集中智能地提取具有代表性的子集。该功能特别适用于以下场景:
- 快速原型验证
- 开发环境下的算法测试
- 资源受限时的数据处理
技术实现细节
核心算法流程
- 主表采样:根据用户指定的
num_rows
参数,从主表中随机抽取指定数量的记录 - 关联表处理:
- 向上追溯:处理所有父表、祖父表等祖先表
- 向下清理:使用
drop_unknown_references
确保引用完整性
- 验证机制:确保采样后的每个表至少保留一条记录
关键处理逻辑
对于关联表的处理采用了智能的比例保留策略:
- 对于被完全引用的父表:仅保留与子集主表关联的记录
- 对于存在未引用记录的父表:按相同比例随机丢弃部分未引用记录
- 钻石型关联处理:正确处理多路径关联的祖表记录
采样比例控制
系统自动计算并应用主表的采样比例,确保:
- 数据结构完整性
- 关联关系一致性
- 采样结果代表性
使用示例与输出
典型使用方式如下:
from sdv.utils import poc
small_dataset = poc.get_random_subset(
data,
metadata,
main_table_name='transactions',
num_rows=1000,
verbose=True
)
输出示例展示了清晰的采样对比:
Success! Your subset has 90% less rows than the original.
Table Name # Rows (Original) # Rows (Subset)
sessions 1200 120
transactions 5000 200
工程实践考量
- 错误处理:当采样导致空表时,系统会提示用户调整参数或重试
- 性能优化:随机采样算法经过优化,适合处理大规模数据
- 可观测性:详细的verbose输出帮助用户理解采样过程
应用价值
该功能的实现为数据科学家提供了:
- 快速实验迭代能力
- 资源敏感型开发支持
- 数据结构保持的采样方案
- 透明的采样过程可视化
总结
SDV中的get_random_subset
功能通过智能的关联感知采样算法,解决了大数据环境下数据子集采样的关键问题。其实现既考虑了算法效率,又确保了数据结构的完整性,为合成数据生成的前期工作提供了重要支持。这一功能的加入进一步完善了SDV的工具链,使其在数据处理全流程中都能提供价值。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194