推荐使用Actions on Google Java/Kotlin客户端库构建智能助手应用
谷歌的Actions on Google Java/Kotlin客户端库是一个强大而灵活的工具,它简化了为Google Assistant创建交互式动作的过程,支持Dialogflow和Actions SDK的实现。利用这个库,开发者可以专注于业务逻辑,而不必担心底层请求处理的复杂性。
:warning: 提醒: 对话式动作将于2023年6月13日被弃用。有关更多信息,请查看对话式动作退役公告。
:warning: 注意: 此库适用于Dialogflow和旧版Actions SDK。现在推荐使用Actions Builder或Actions SDK开发、测试和部署对话式动作。
项目简介
Actions on Google Java/Kotlin库提供了一套完整的Maven依赖项,方便在Java 8及以上版本和Kotlin环境中进行集成开发。借助该库,您可以轻松地在IntelliJ IDEA或其他IDE中快速上手,编写和部署Google Assistant动作的后端服务。
- GitHub仓库: https://github.com/actions-on-google/actions-on-google-java
- 参考文档: https://actions-on-google.github.io/actions-on-google-java/
- Actions on Google官方文档: https://developers.google.com/assistant
- 示例项目: https://developers.google.com/assistant/actions/samples
技术分析
该库提供了核心API类,如App接口(处理JSON请求和响应)、DefaultApp(实现了基础请求处理逻辑)、DialogflowApp和ActionsSdkApp(针对Dialogflow或直接从Google Assistant请求的特有实现)以及帮助构建回复的ActionRequest、ActionResponse和ResponseBuilder等。这些类和接口封装了JSON协议,使得组装和处理各种类型的动作响应变得简单直观。
应用场景
此库广泛应用于以下场景:
- 创建与用户自然对话的Google Assistant动作。
- 实现基于Dialogflow的意图处理器,以处理特定的用户输入。
- 利用辅助意图(如请求确认或获取位置信息)来丰富用户体验。
- 构建富媒体响应,如基本卡片、轮播图、列表和SSML语音回复。
项目特点
- 易用性:通过注解驱动的编程模型,您只需定义一个带有
@ForIntent注解的方法即可处理指定的意图。 - 灵活性:支持文本、音频、视觉元素和各种交互模式的组合,为用户提供丰富的交互体验。
- 强大的构建工具:
ResponseBuilder提供了丰富的辅助方法,用于构建包括基本卡、按钮、建议在内的多类型响应。 - 本地调试和单元测试:可配置本地服务器进行调试,并通过Postman等工具发送测试请求。
- 全面的文档和支持:详细的参考文档、社区资源和官方支持,便于问题排查和学习。
要开始您的Google Assistant项目,只需将相关依赖添加到Gradle或Maven文件中,然后按照提供的说明设置项目。别忘了从GitHub上的模板项目入手,以加快开发速度。
立即尝试Actions on Google Java/Kotlin客户端库,构建出令人惊叹的Google Assistant体验!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00