推荐使用Actions on Google Java/Kotlin客户端库构建智能助手应用
谷歌的Actions on Google Java/Kotlin客户端库是一个强大而灵活的工具,它简化了为Google Assistant创建交互式动作的过程,支持Dialogflow和Actions SDK的实现。利用这个库,开发者可以专注于业务逻辑,而不必担心底层请求处理的复杂性。
:warning: 提醒: 对话式动作将于2023年6月13日被弃用。有关更多信息,请查看对话式动作退役公告。
:warning: 注意: 此库适用于Dialogflow和旧版Actions SDK。现在推荐使用Actions Builder或Actions SDK开发、测试和部署对话式动作。
项目简介
Actions on Google Java/Kotlin库提供了一套完整的Maven依赖项,方便在Java 8及以上版本和Kotlin环境中进行集成开发。借助该库,您可以轻松地在IntelliJ IDEA或其他IDE中快速上手,编写和部署Google Assistant动作的后端服务。
- GitHub仓库: https://github.com/actions-on-google/actions-on-google-java
- 参考文档: https://actions-on-google.github.io/actions-on-google-java/
- Actions on Google官方文档: https://developers.google.com/assistant
- 示例项目: https://developers.google.com/assistant/actions/samples
技术分析
该库提供了核心API类,如App接口(处理JSON请求和响应)、DefaultApp(实现了基础请求处理逻辑)、DialogflowApp和ActionsSdkApp(针对Dialogflow或直接从Google Assistant请求的特有实现)以及帮助构建回复的ActionRequest、ActionResponse和ResponseBuilder等。这些类和接口封装了JSON协议,使得组装和处理各种类型的动作响应变得简单直观。
应用场景
此库广泛应用于以下场景:
- 创建与用户自然对话的Google Assistant动作。
- 实现基于Dialogflow的意图处理器,以处理特定的用户输入。
- 利用辅助意图(如请求确认或获取位置信息)来丰富用户体验。
- 构建富媒体响应,如基本卡片、轮播图、列表和SSML语音回复。
项目特点
- 易用性:通过注解驱动的编程模型,您只需定义一个带有
@ForIntent注解的方法即可处理指定的意图。 - 灵活性:支持文本、音频、视觉元素和各种交互模式的组合,为用户提供丰富的交互体验。
- 强大的构建工具:
ResponseBuilder提供了丰富的辅助方法,用于构建包括基本卡、按钮、建议在内的多类型响应。 - 本地调试和单元测试:可配置本地服务器进行调试,并通过Postman等工具发送测试请求。
- 全面的文档和支持:详细的参考文档、社区资源和官方支持,便于问题排查和学习。
要开始您的Google Assistant项目,只需将相关依赖添加到Gradle或Maven文件中,然后按照提供的说明设置项目。别忘了从GitHub上的模板项目入手,以加快开发速度。
立即尝试Actions on Google Java/Kotlin客户端库,构建出令人惊叹的Google Assistant体验!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00