小样本学习精华论文指南
2024-08-27 23:49:41作者:裴锟轩Denise
项目介绍
该项目名为“awesome-papers-fewshot”,由Duan-JM维护,是小样本学习领域的一份精选论文集合。它旨在汇集近年来关于这一主题的研究成果,以帮助研究人员和开发者快速接入小样本学习的前沿进展。此外,该仓库不仅提供了论文列表,还涉及元学习(Meta-Learning)、域适应、以及相关工具和数据集,为希望了解或贡献于该领域的人员提供一站式资源。
项目快速启动
要开始利用这份宝贵的资源,首先你需要克隆这个GitHub仓库到本地:
git clone https://github.com/Duan-JM/awesome-papers-fewshot.git
之后,你可以通过阅读.md文件,特别是README.md来获取最新的论文列表和分类。对于每篇论文,通常会附带简短的描述、发表日期和链接,便于你快速筛选感兴趣的内容。
如果你使用Python环境进行研究,仓库可能还会推荐一些如pytorch-meta、meta-dataset等库来辅助你的实验。
应用案例和最佳实践
虽然这个仓库主要聚焦于理论研究和论文,但通过阅读其中的论文,你能发现许多研究者在图像识别、自然语言处理等领域的小样本学习应用案例。例如,mini-ImageNet和tiered-ImageNet常用于小样本图像分类的研究,而 FewRel 和 FewJoint 则适用于NLP中的小样本关系抽取任务。实践中,遵循论文中提到的方法和实验设置,是掌握这些技术的关键。
典型生态项目
- PyTorch-Metric-Learning: 提供了丰富的度量学习工具,适用于小样本场景下的特征表示优化。
- meta-dataset: 是一个重要的评估框架,特别适合于研究真实环境下少样本分类问题。
- Few-Shot-Object-Detection-Dataset: 专注于物体检测的小样本数据集,是进行特定任务研究的基础资源。
结语
通过深入这个仓库,你可以紧跟小样本学习领域的最新动态,从中获得灵感并应用于自己的项目中。不断探索和实践,将在这一充满挑战的领域取得进步。
请注意,以上内容是基于提供的Markdown信息概述而成,具体操作步骤和细节可能会随着仓库的更新而有所变化,建议访问仓库页面查看最新说明。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
660
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
490
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1