M3DM 开源项目教程
2024-09-14 00:09:36作者:宗隆裙
项目介绍
M3DM(Multi-3D-Memory)是一个新颖的多模态异常检测方法,采用混合融合方案。该项目的主要目标是解决基于3D点云和RGB图像的多模态工业异常检测问题。现有的多模态工业异常检测方法通常直接连接多模态特征,这会导致特征之间的强干扰,从而影响检测性能。M3DM通过设计无监督特征融合和决策层融合,避免了信息丢失,并使用多个内存银行和额外的新颖性分类器来做出最终决策。此外,M3DM还提出了点特征对齐操作,以更好地对齐点云和RGB特征。
项目快速启动
环境准备
在开始之前,请确保您的环境满足以下要求:
- Ubuntu 18.04
- Python 3.8
- PyTorch 1.9.0
- CUDA 11.3
安装依赖
首先,克隆项目仓库并安装所需的依赖包:
git clone https://github.com/nomewang/M3DM.git
cd M3DM
pip install -r requirements.txt
数据准备
下载MVTec-3D AD数据集并将其放置在dataset文件夹中:
mkdir -p datasets/mvtec3d
# 下载数据集并解压到 datasets/mvtec3d 文件夹中
数据预处理
运行数据预处理脚本:
python utils/preprocessing.py datasets/mvtec3d/
模型训练
使用以下命令训练模型:
python main.py \
--method_name DINO+Point_MAE \
--memory_bank multiple \
--rgb_backbone_name vit_base_patch8_224_dino \
--xyz_backbone_name Point_MAE \
--save_feature
模型测试
训练完成后,使用以下命令进行模型测试:
python main.py \
--method_name DINO+Point_MAE+Fusion \
--use_uff \
--memory_bank multiple \
--rgb_backbone_name vit_base_patch8_224_dino \
--xyz_backbone_name Point_MAE \
--fusion_module_path checkpoints/[FUSION_CHECKPOINT].pth
应用案例和最佳实践
工业异常检测
M3DM在工业异常检测中表现出色,特别是在MVTec-3D AD数据集上,其检测和分割精度均优于现有的最先进方法。M3DM的混合融合方案和点特征对齐操作使其在处理多模态数据时具有更高的鲁棒性和准确性。
最佳实践
- 数据预处理:确保数据预处理步骤正确执行,以避免数据噪声对模型性能的影响。
- 模型选择:根据具体应用场景选择合适的模型配置,如不同的骨干网络和内存银行设置。
- 超参数调优:通过实验调整学习率、批量大小等超参数,以获得最佳的模型性能。
典型生态项目
3D-ADS
3D-ADS是一个基于3D点云的异常检测系统,与M3DM在数据处理和模型架构上有一定的相似性,可以作为M3DM的补充工具。
MoCo-v3
MoCo-v3是一个基于对比学习的视觉表示学习框架,M3DM在其基础上进行了扩展,引入了多模态特征融合和点特征对齐操作,进一步提升了模型的性能。
通过以上步骤,您可以快速上手并使用M3DM进行多模态工业异常检测。希望本教程对您有所帮助!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
247
2.45 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
546
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
595
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
409
Ascend Extension for PyTorch
Python
85
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
121