M3DM 开源项目教程
2024-09-14 12:42:40作者:宗隆裙
项目介绍
M3DM(Multi-3D-Memory)是一个新颖的多模态异常检测方法,采用混合融合方案。该项目的主要目标是解决基于3D点云和RGB图像的多模态工业异常检测问题。现有的多模态工业异常检测方法通常直接连接多模态特征,这会导致特征之间的强干扰,从而影响检测性能。M3DM通过设计无监督特征融合和决策层融合,避免了信息丢失,并使用多个内存银行和额外的新颖性分类器来做出最终决策。此外,M3DM还提出了点特征对齐操作,以更好地对齐点云和RGB特征。
项目快速启动
环境准备
在开始之前,请确保您的环境满足以下要求:
- Ubuntu 18.04
- Python 3.8
- PyTorch 1.9.0
- CUDA 11.3
安装依赖
首先,克隆项目仓库并安装所需的依赖包:
git clone https://github.com/nomewang/M3DM.git
cd M3DM
pip install -r requirements.txt
数据准备
下载MVTec-3D AD数据集并将其放置在dataset文件夹中:
mkdir -p datasets/mvtec3d
# 下载数据集并解压到 datasets/mvtec3d 文件夹中
数据预处理
运行数据预处理脚本:
python utils/preprocessing.py datasets/mvtec3d/
模型训练
使用以下命令训练模型:
python main.py \
--method_name DINO+Point_MAE \
--memory_bank multiple \
--rgb_backbone_name vit_base_patch8_224_dino \
--xyz_backbone_name Point_MAE \
--save_feature
模型测试
训练完成后,使用以下命令进行模型测试:
python main.py \
--method_name DINO+Point_MAE+Fusion \
--use_uff \
--memory_bank multiple \
--rgb_backbone_name vit_base_patch8_224_dino \
--xyz_backbone_name Point_MAE \
--fusion_module_path checkpoints/[FUSION_CHECKPOINT].pth
应用案例和最佳实践
工业异常检测
M3DM在工业异常检测中表现出色,特别是在MVTec-3D AD数据集上,其检测和分割精度均优于现有的最先进方法。M3DM的混合融合方案和点特征对齐操作使其在处理多模态数据时具有更高的鲁棒性和准确性。
最佳实践
- 数据预处理:确保数据预处理步骤正确执行,以避免数据噪声对模型性能的影响。
- 模型选择:根据具体应用场景选择合适的模型配置,如不同的骨干网络和内存银行设置。
- 超参数调优:通过实验调整学习率、批量大小等超参数,以获得最佳的模型性能。
典型生态项目
3D-ADS
3D-ADS是一个基于3D点云的异常检测系统,与M3DM在数据处理和模型架构上有一定的相似性,可以作为M3DM的补充工具。
MoCo-v3
MoCo-v3是一个基于对比学习的视觉表示学习框架,M3DM在其基础上进行了扩展,引入了多模态特征融合和点特征对齐操作,进一步提升了模型的性能。
通过以上步骤,您可以快速上手并使用M3DM进行多模态工业异常检测。希望本教程对您有所帮助!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249