开源项目教程:Awesome Exploration RL
2024-08-31 22:15:36作者:乔或婵
项目介绍
awesome-exploration-rl
是一个精心策划的强化学习探索资源列表,由 OpenDILab 维护。该项目旨在为研究者和开发者提供一系列高质量的探索强化学习(Exploration RL)资源,包括论文、代码实现、工具和相关项目。通过这个项目,用户可以快速了解和掌握强化学习中的探索技术,以及如何在实际问题中应用这些技术。
项目快速启动
环境准备
首先,确保你已经安装了 Python 3.7 或更高版本。然后,克隆项目仓库并安装必要的依赖:
git clone https://github.com/opendilab/awesome-exploration-rl.git
cd awesome-exploration-rl
pip install -r requirements.txt
示例代码
以下是一个简单的示例代码,展示了如何在 MiniGrid
环境中使用探索策略:
import gym
import gym_minigrid
from exploration_rl.agents import RandomAgent
# 创建环境
env = gym.make('MiniGrid-Empty-8x8-v0')
# 初始化随机代理
agent = RandomAgent(env)
# 运行一个 episode
episode_count = 1
for i in range(episode_count):
obs = env.reset()
done = False
while not done:
action = agent.act(obs)
obs, reward, done, _ = env.step(action)
env.render()
应用案例和最佳实践
案例一:Atari 游戏中的探索策略
在 Atari 游戏中,探索策略对于学习有效的游戏策略至关重要。通过使用 awesome-exploration-rl
中提供的探索技术,如动作选择扰动和状态选择指导,可以在 Atari 57 环境中实现更高效的探索。
案例二:Crafter 环境中的安全探索
在 Crafter 环境中,安全探索是一个重要的问题。通过使用 awesome-exploration-rl
中的安全探索技术,可以在不增加额外样本复杂度的情况下,实现奖励无关的强化学习。
典型生态项目
OpenDILab 开源决策智能平台
OpenDILab 是一个开源的决策智能平台,提供了丰富的强化学习工具和资源。与 awesome-exploration-rl
结合使用,可以进一步扩展和深化在强化学习探索领域的研究和应用。
Gym-MiniGrid
Gym-MiniGrid 是一个用于强化学习研究的迷你网格世界环境。它提供了多种复杂度的迷你网格环境,非常适合用于测试和开发探索策略。
通过这些生态项目的结合使用,可以构建出更加强大和灵活的强化学习探索系统。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
966
571

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
545
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23