CoordConv 项目启动与配置教程
2025-04-23 09:30:10作者:彭桢灵Jeremy
1. 项目目录结构及介绍
CoordConv 项目是基于 Uber Research 的坐标卷积神经网络实现,以下是对项目目录结构的简要介绍:
README.md: 项目说明文件,包含项目简介、安装指南、使用方法和示例。LICENSE: 项目使用的开源协议文件。requirements.txt: 项目运行所需的 Python 库依赖列表。coordconv: 包含 CoordConv 实现的 Python 包。__init__.py: 包初始化文件。coord_conv.py: CoordConv 层的实现代码。
examples: 示例代码目录,用于展示 CoordConv 的使用方法。mnist_example.py: 使用 CoordConv 进行 MNIST 手写数字识别的示例。cifar10_example.py: 使用 CoordConv 进行 CIFAR-10 图像分类的示例。
tests: 单元测试目录,用于验证代码的正确性。
2. 项目的启动文件介绍
项目的启动文件通常指的是示例目录中的 Python 脚本。以下以 mnist_example.py 为例进行介绍:
# mnist_example.py
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from coordconv import CoordConv
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = CoordConv(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 训练模型
def train(model, device, train_loader, optimizer, criterion):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 主函数
def main():
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载数据集
train_loader = datasets.MNIST(root='./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# 初始化模型、优化器和损失函数
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(1, 11): # loop over the dataset multiple times
train(model, device, train_loader, optimizer, criterion)
if __name__ == '__main__':
main()
3. 项目的配置文件介绍
本项目没有专门的配置文件,但是可以通过修改 mnist_example.py 或其他示例脚本中的参数来调整模型训练的配置。以下是一些可配置的参数:
device: 指定模型训练的设备(CPU 或 GPU)。train_loader: 数据加载器,可以通过修改batch_size等参数来调整数据加载的方式。model: 模型结构,可以在这里定义或修改网络层的参数。optimizer: 优化器,可以通过修改学习率lr和动量momentum等参数来调整优化过程。criterion: 损失函数,本项目使用了交叉熵损失函数。
通过调整这些参数,用户可以根据自己的需求来配置模型训练的环境。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355