CoordConv 项目启动与配置教程
2025-04-23 20:35:17作者:彭桢灵Jeremy
1. 项目目录结构及介绍
CoordConv 项目是基于 Uber Research 的坐标卷积神经网络实现,以下是对项目目录结构的简要介绍:
README.md: 项目说明文件,包含项目简介、安装指南、使用方法和示例。LICENSE: 项目使用的开源协议文件。requirements.txt: 项目运行所需的 Python 库依赖列表。coordconv: 包含 CoordConv 实现的 Python 包。__init__.py: 包初始化文件。coord_conv.py: CoordConv 层的实现代码。
examples: 示例代码目录,用于展示 CoordConv 的使用方法。mnist_example.py: 使用 CoordConv 进行 MNIST 手写数字识别的示例。cifar10_example.py: 使用 CoordConv 进行 CIFAR-10 图像分类的示例。
tests: 单元测试目录,用于验证代码的正确性。
2. 项目的启动文件介绍
项目的启动文件通常指的是示例目录中的 Python 脚本。以下以 mnist_example.py 为例进行介绍:
# mnist_example.py
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from coordconv import CoordConv
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = CoordConv(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 训练模型
def train(model, device, train_loader, optimizer, criterion):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# 主函数
def main():
# 设置设备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载数据集
train_loader = datasets.MNIST(root='./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# 初始化模型、优化器和损失函数
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(1, 11): # loop over the dataset multiple times
train(model, device, train_loader, optimizer, criterion)
if __name__ == '__main__':
main()
3. 项目的配置文件介绍
本项目没有专门的配置文件,但是可以通过修改 mnist_example.py 或其他示例脚本中的参数来调整模型训练的配置。以下是一些可配置的参数:
device: 指定模型训练的设备(CPU 或 GPU)。train_loader: 数据加载器,可以通过修改batch_size等参数来调整数据加载的方式。model: 模型结构,可以在这里定义或修改网络层的参数。optimizer: 优化器,可以通过修改学习率lr和动量momentum等参数来调整优化过程。criterion: 损失函数,本项目使用了交叉熵损失函数。
通过调整这些参数,用户可以根据自己的需求来配置模型训练的环境。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
683
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
150
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
928
82