开源项目 `criticality_score` 使用教程
2024-09-07 00:51:09作者:曹令琨Iris
1、项目介绍
criticality_score 是一个由 OpenSSF(Open Source Security Foundation)维护的开源项目,旨在为每个开源项目生成一个关键性评分。这个评分定义了一个项目的影响力和重要性,评分范围从0(最不关键)到1(最关键)。该项目的目标是生成一个关键项目列表,帮助开源社区依赖这些项目,并利用这些数据主动改善这些关键项目的安全态势。
2、项目快速启动
环境准备
在开始之前,确保你已经安装了以下工具:
- Python 3.x
- Git
gsutil(如果你需要从Google Cloud Storage下载数据)
克隆项目
首先,克隆 criticality_score 项目到本地:
git clone https://github.com/ossf/criticality_score.git
cd criticality_score
设置GitHub访问令牌
为了避免GitHub API的速率限制,你需要创建一个GitHub访问令牌,并将其设置为环境变量:
# 对于POSIX平台(如Linux、Mac):
export GITHUB_AUTH_TOKEN=<your access token>
# 对于Windows:
set GITHUB_AUTH_TOKEN=<your access token>
生成关键性评分
你可以使用以下命令生成关键性评分:
python3 criticality_score.py --repo=ossf/criticality_score
格式化结果
生成的结果可以以文本、JSON或CSV格式输出。你可以使用 -format 标志指定输出格式:
python3 criticality_score.py --repo=ossf/criticality_score --format=json
3、应用案例和最佳实践
应用案例
criticality_score 可以用于以下场景:
- 安全评估:通过评估开源项目的关键性评分,组织可以优先考虑那些对整个生态系统至关重要的项目,并为其分配更多的安全资源。
- 依赖管理:项目维护者可以使用关键性评分来识别其项目依赖的关键开源组件,从而更好地管理这些依赖项。
最佳实践
- 定期更新评分:由于开源项目的活跃度和影响力可能会随时间变化,建议定期更新关键性评分。
- 结合其他工具:可以将
criticality_score与其他开源安全工具(如Scorecard)结合使用,以获得更全面的安全评估。
4、典型生态项目
以下是一些与 criticality_score 相关的典型生态项目:
- Scorecard:一个用于评估开源项目安全性的工具,
criticality_score可以利用其基础设施来生成评分。 - OpenSSF:Open Source Security Foundation,致力于提高开源软件的安全性,
criticality_score是其关键项目之一。 - Google Cloud Platform (GCP):
criticality_score的数据存储在GCP上,用户可以通过gsutil工具访问这些数据。
通过这些生态项目,criticality_score 能够更好地服务于开源社区,帮助提升整个生态系统的安全性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492