Apollo Client 与 MSW 2.0 集成测试中的延迟问题分析
在基于 Apollo Client 3.11.8 和 MSW 2.x 的测试环境中,开发团队遇到了一个值得关注的技术问题。当使用 MSW 的 delay('infinite') 功能模拟长时间延迟响应时,测试结束时会出现"无法读取未定义的属性'result'"的错误。
问题现象
测试环境中,当使用 MSW 的 delay('infinite') 来模拟长时间未响应的网络请求时,测试结束后会抛出以下错误堆栈:
TypeError: Cannot read properties of undefined (reading 'result')
at handleError
at createHttpLink.js
深入调试发现,错误发生在 Apollo Client 的 handleError 函数中,该函数尝试访问 err.result 属性,但此时 err 参数却为 undefined。这表明在测试环境清理过程中,某些异步操作被意外中断,导致错误处理逻辑接收到了非预期的参数。
技术背景
Apollo Client 是一个功能强大的 GraphQL 客户端库,广泛应用于现代前端开发。MSW (Mock Service Worker) 则是一个流行的 API 模拟工具,特别适合在测试环境中拦截和模拟网络请求。两者的结合为前端测试提供了强大支持。
在测试场景中,delay('infinite') 通常用于模拟永远不会完成的网络请求,这对于测试超时处理和加载状态非常有用。然而,这种极端情况也更容易暴露底层实现的边界条件问题。
问题根源分析
经过深入研究,开发团队发现问题的根本原因与测试环境的清理机制有关:
- 当测试使用 delay('infinite') 时,Apollo Client 的请求会保持挂起状态
- 测试结束后,测试运行环境(如 Vitest)会尝试清理所有未完成的异步操作
- 这种清理过程可能导致挂起的 Promise 被强制拒绝,但错误对象未能正确构造
- Apollo Client 的错误处理函数 handleError 假设错误对象总是存在且具有特定结构,这在边界情况下不成立
解决方案
针对这个问题,开发团队提出了几种解决方案:
-
防御性编程:修改 handleError 函数,增加对错误对象的空值检查
export function handleError(err, observer) { if (err && err.result && err.result.errors && err.result.data) { // 原有逻辑 } } -
环境升级:将测试环境中的 jsdom 从 16.7.0 升级到更高版本(如 26.1.0),因为早期版本的 AbortSignal 实现可能存在缺陷
-
测试策略调整:在测试中使用有限的延迟而非无限延迟,并在测试结束时显式清理所有模拟请求
最佳实践建议
基于这一案例,我们总结出以下前端测试最佳实践:
- 在使用极端模拟条件(如无限延迟)时,要特别注意测试环境的清理
- 保持测试工具链(如 jsdom、Vitest 等)的及时更新
- 对错误处理逻辑实施防御性编程,特别是处理来自外部环境的输入
- 在模拟网络请求时,考虑使用可预测的延迟而非无限延迟
- 为异步测试添加适当的超时机制,避免测试挂起
这一案例展示了现代前端开发中工具链集成的复杂性,也提醒我们在处理边界条件时需要更加谨慎。通过理解底层机制和采取防御性编程策略,可以构建更加健壮的前端测试体系。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00