OSSF Scorecard项目从Container Registry迁移到Artifact Registry的技术实践
Google Cloud宣布将于2025年逐步淘汰Container Registry服务,全面转向Artifact Registry。作为依赖Google Cloud容器服务的开源项目,OSSF Scorecard团队面临着从Container Registry(gcr.io)迁移到Artifact Registry的重要任务。本文将详细介绍这一迁移过程的技术细节、挑战和解决方案。
迁移背景与时间节点
Google Cloud Container Registry的淘汰计划分为三个阶段:
- 2025年3月18日起,禁止向Container Registry写入新镜像
- 2025年5月20日起,禁止从Container Registry读取镜像
- 2025年7月17日起,所有gcr.io端点将完全由Artifact Registry提供服务
对于OSSF Scorecard项目而言,这意味着需要在此之前完成所有容器镜像的迁移工作,确保CI/CD流程和用户使用不受影响。
项目容器镜像现状分析
OSSF Scorecard项目在Container Registry中维护了多个关键镜像,主要分为两类:
面向用户的公共镜像
- scorecard:核心评分工具镜像
- scorecard-action:GitHub Action使用的镜像
- scorecard-attestor:认证相关镜像(可能)
内部基础设施镜像
- scorecard-batch-controller
- scorecard-batch-worker
- scorecard-bq-transfer
- scorecard-cii-worker
- scorecard-github-server
- scorecard-webhook-releasetest
经过分析,项目积累了约18,000个镜像,总存储量约350GB。按照Artifact Registry的定价模型,这将产生每月约35美元的费用。
迁移策略与技术实现
团队制定了以下迁移策略:
1. 镜像筛选与保留
考虑到历史镜像数量庞大,团队决定:
- 保留所有带有语义版本标签的公共镜像(如v1.0.0、v2.1.3等)
- 保留latest和stable等关键标签
- 使用Google提供的迁移工具配合--recent-images参数,仅迁移最近30-180天内被拉取过的镜像
2. 镜像拉取与标记
为确保关键镜像被识别为"最近使用",团队编写了自动化脚本批量拉取所有带标签的镜像。例如对于scorecard镜像:
versions=(
latest
stable
v5.1.1
v5.1.0
# 其他版本...
)
for i in "${versions[@]}"; do
docker pull gcr.io/openssf/scorecard:$i
done
3. 镜像存储优化
为减少未来存储开销,团队实施了以下优化措施:
- 将Scorecard主镜像发布到GitHub Container Registry(GHCR)
- 为Scorecard Action添加定期清理未标记镜像的工作流
- 评估将cron基础设施迁移到GHCR的可行性
迁移过程中的技术挑战
在迁移过程中,团队遇到了几个技术问题:
1. 镜像写入异常
尽管官方文档称Container Registry已停止写入,但实际上仍能间歇性工作。这导致团队需要同时处理迁移和日常构建任务。
2. 稳定版本更新中断
团队发现最新的stable镜像已三周未更新。经排查,这是由于间接依赖的GCS存储库更新导致的错误处理变化。具体来说:
- Google Cloud Go库更新开始包装某些错误
- 直接依赖的gocloud.dev因需要Go 1.24而被Dependabot忽略更新
- 错误处理逻辑变化导致shard处理失败
解决方案有两种:
- 提前升级到Go 1.24以兼容最新gocloud.dev
- 修改错误检查逻辑,显式处理storage.ErrObjectNotExist错误
团队选择了第二种方案作为临时修复:
ret, err := bucket.Exists(ctx, key)
if err != nil && !errors.Is(err, storage.ErrObjectNotExist) {
return ret, fmt.Errorf("error during bucket.Exists: %w", err)
}
迁移后的验证与监控
完成迁移后,团队进行了全面验证:
- 确认所有带标签的镜像已成功迁移
- 验证CI/CD流程在新registry下的工作状态
- 监控stable标签的自动更新机制
- 确保用户-facing的镜像(latest/stable)保持可用性
经验总结与最佳实践
通过这次迁移,OSSF Scorecard团队总结了以下经验:
- 尽早规划迁移:在服务淘汰前留出充足时间处理意外问题
- 镜像分类管理:区分用户-facing和内部镜像,制定不同的保留策略
- 自动化验证:编写脚本验证关键镜像的可用性
- 依赖管理:密切监控间接依赖的变更可能带来的影响
- 多registry策略:考虑使用GHCR等替代方案分散风险
这次迁移不仅解决了服务淘汰带来的挑战,也为项目未来的容器镜像管理奠定了更可持续的基础。通过优化存储策略和引入多registry支持,OSSF Scorecard项目在保证服务连续性的同时,也提升了基础设施的健壮性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00