Whisper.rn 项目使用教程
1. 项目介绍
Whisper.rn 是一个 React Native 绑定库,用于集成 OpenAI 的 Whisper 自动语音识别(ASR)模型。Whisper 是一个高性能的语音识别系统,经过大量多语言和多任务监督数据的训练,能够处理多种语言并将其翻译成英语。Whisper.rn 使得开发者可以在 React Native 应用中轻松实现语音转文本功能。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Node.js 和 npm。然后,在你的 React Native 项目中安装 whisper.rn:
npm install whisper.rn
iOS 配置
在 iOS 项目中,重新运行 pod-install:
npx pod-install
如果你打算使用中等或大型模型,建议在 iOS 项目中启用“扩展虚拟地址”功能。
Android 配置
在 Android 项目中,如果启用了 ProGuard,请添加以下规则:
# whisper.rn
-keep class com.rnwhisper.** { *; }
建议在项目根目录的构建配置中使用 ndkVersion = "24.0.8215888" 或更高版本。
添加麦克风权限
iOS
在 ios/[YOUR_APP_NAME]/info.plist 中添加以下内容:
<key>NSMicrophoneUsageDescription</key>
<string>This app requires microphone access in order to transcribe speech</string>
Android
在 android/app/src/main/AndroidManifest.xml 中添加以下内容:
<uses-permission android:name="android.permission.RECORD_AUDIO" />
使用示例
以下是一个简单的使用示例,展示如何初始化 Whisper 并进行语音转文本:
import { initWhisper } from 'whisper.rn';
const whisperContext = await initWhisper({
filePath: 'file:///path/to/ggml-tiny.en.bin',
});
const sampleFilePath = 'file:///path/to/sample.wav';
const options = { language: 'en' };
const [stop, promise] = whisperContext.transcribe(sampleFilePath, options);
const [result] = await promise;
console.log(result); // 输出语音转文本的结果
3. 应用案例和最佳实践
实时语音转文本
Whisper.rn 支持实时语音转文本功能。以下是一个实时语音转文本的示例:
const [stop, subscribe] = await whisperContext.transcribeRealtime(options);
subscribe(evt => {
const [isCapturing, data, processTime, recordingTime] = evt;
console.log(`Realtime transcribing: ${isCapturing ? 'ON' : 'OFF'}\n` +
`Result: ${data.result}\n\n` +
`Process time: ${processTime}ms\n` +
`Recording time: ${recordingTime}ms`);
if (!isCapturing) {
console.log('Finished realtime transcribing');
}
});
使用 Core ML 模型
在 iOS 上,你可以使用 Core ML 模型来提高性能。以下是如何使用 Core ML 模型的示例:
import { Platform } from 'react-native';
const whisperContext = await initWhisper({
filePath: require('./assets/ggml-tiny.en.bin'),
coreMLModelAsset: Platform.OS === 'ios' ? {
filename: 'ggml-tiny.en-encoder.mlmodelc',
assets: [
require('./assets/ggml-tiny.en-encoder.mlmodelc/weights/weight.bin'),
require('./assets/ggml-tiny.en-encoder.mlmodelc/model.mil'),
require('./assets/ggml-tiny.en-encoder.mlmodelc/coremldata.bin'),
],
} : undefined,
});
4. 典型生态项目
1. Expo 项目
如果你使用 Expo,你需要在项目中预构建 Whisper.rn。请参考 Expo 的指南进行配置。
2. 使用 FFmpeg 进行音频处理
在某些情况下,你可能需要使用 FFmpeg 对音频文件进行预处理。你可以使用 ffmpeg-kit-react-native 库来实现这一点。
3. 使用 React Native 状态管理
在复杂的应用中,你可能需要使用状态管理库(如 Redux 或 MobX)来管理 Whisper 的上下文和状态。
通过以上步骤,你可以在 React Native 项目中成功集成 Whisper.rn,并实现语音转文本功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00