Whisper.rn 项目使用教程
1. 项目介绍
Whisper.rn 是一个 React Native 绑定库,用于集成 OpenAI 的 Whisper 自动语音识别(ASR)模型。Whisper 是一个高性能的语音识别系统,经过大量多语言和多任务监督数据的训练,能够处理多种语言并将其翻译成英语。Whisper.rn 使得开发者可以在 React Native 应用中轻松实现语音转文本功能。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Node.js 和 npm。然后,在你的 React Native 项目中安装 whisper.rn
:
npm install whisper.rn
iOS 配置
在 iOS 项目中,重新运行 pod-install
:
npx pod-install
如果你打算使用中等或大型模型,建议在 iOS 项目中启用“扩展虚拟地址”功能。
Android 配置
在 Android 项目中,如果启用了 ProGuard,请添加以下规则:
# whisper.rn
-keep class com.rnwhisper.** { *; }
建议在项目根目录的构建配置中使用 ndkVersion = "24.0.8215888"
或更高版本。
添加麦克风权限
iOS
在 ios/[YOUR_APP_NAME]/info.plist
中添加以下内容:
<key>NSMicrophoneUsageDescription</key>
<string>This app requires microphone access in order to transcribe speech</string>
Android
在 android/app/src/main/AndroidManifest.xml
中添加以下内容:
<uses-permission android:name="android.permission.RECORD_AUDIO" />
使用示例
以下是一个简单的使用示例,展示如何初始化 Whisper 并进行语音转文本:
import { initWhisper } from 'whisper.rn';
const whisperContext = await initWhisper({
filePath: 'file:///path/to/ggml-tiny.en.bin',
});
const sampleFilePath = 'file:///path/to/sample.wav';
const options = { language: 'en' };
const [stop, promise] = whisperContext.transcribe(sampleFilePath, options);
const [result] = await promise;
console.log(result); // 输出语音转文本的结果
3. 应用案例和最佳实践
实时语音转文本
Whisper.rn 支持实时语音转文本功能。以下是一个实时语音转文本的示例:
const [stop, subscribe] = await whisperContext.transcribeRealtime(options);
subscribe(evt => {
const [isCapturing, data, processTime, recordingTime] = evt;
console.log(`Realtime transcribing: ${isCapturing ? 'ON' : 'OFF'}\n` +
`Result: ${data.result}\n\n` +
`Process time: ${processTime}ms\n` +
`Recording time: ${recordingTime}ms`);
if (!isCapturing) {
console.log('Finished realtime transcribing');
}
});
使用 Core ML 模型
在 iOS 上,你可以使用 Core ML 模型来提高性能。以下是如何使用 Core ML 模型的示例:
import { Platform } from 'react-native';
const whisperContext = await initWhisper({
filePath: require('./assets/ggml-tiny.en.bin'),
coreMLModelAsset: Platform.OS === 'ios' ? {
filename: 'ggml-tiny.en-encoder.mlmodelc',
assets: [
require('./assets/ggml-tiny.en-encoder.mlmodelc/weights/weight.bin'),
require('./assets/ggml-tiny.en-encoder.mlmodelc/model.mil'),
require('./assets/ggml-tiny.en-encoder.mlmodelc/coremldata.bin'),
],
} : undefined,
});
4. 典型生态项目
1. Expo 项目
如果你使用 Expo,你需要在项目中预构建 Whisper.rn。请参考 Expo 的指南进行配置。
2. 使用 FFmpeg 进行音频处理
在某些情况下,你可能需要使用 FFmpeg 对音频文件进行预处理。你可以使用 ffmpeg-kit-react-native
库来实现这一点。
3. 使用 React Native 状态管理
在复杂的应用中,你可能需要使用状态管理库(如 Redux 或 MobX)来管理 Whisper 的上下文和状态。
通过以上步骤,你可以在 React Native 项目中成功集成 Whisper.rn,并实现语音转文本功能。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04