Whisper.rn 项目使用教程
1. 项目介绍
Whisper.rn 是一个 React Native 绑定库,用于集成 OpenAI 的 Whisper 自动语音识别(ASR)模型。Whisper 是一个高性能的语音识别系统,经过大量多语言和多任务监督数据的训练,能够处理多种语言并将其翻译成英语。Whisper.rn 使得开发者可以在 React Native 应用中轻松实现语音转文本功能。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Node.js 和 npm。然后,在你的 React Native 项目中安装 whisper.rn:
npm install whisper.rn
iOS 配置
在 iOS 项目中,重新运行 pod-install:
npx pod-install
如果你打算使用中等或大型模型,建议在 iOS 项目中启用“扩展虚拟地址”功能。
Android 配置
在 Android 项目中,如果启用了 ProGuard,请添加以下规则:
# whisper.rn
-keep class com.rnwhisper.** { *; }
建议在项目根目录的构建配置中使用 ndkVersion = "24.0.8215888" 或更高版本。
添加麦克风权限
iOS
在 ios/[YOUR_APP_NAME]/info.plist 中添加以下内容:
<key>NSMicrophoneUsageDescription</key>
<string>This app requires microphone access in order to transcribe speech</string>
Android
在 android/app/src/main/AndroidManifest.xml 中添加以下内容:
<uses-permission android:name="android.permission.RECORD_AUDIO" />
使用示例
以下是一个简单的使用示例,展示如何初始化 Whisper 并进行语音转文本:
import { initWhisper } from 'whisper.rn';
const whisperContext = await initWhisper({
filePath: 'file:///path/to/ggml-tiny.en.bin',
});
const sampleFilePath = 'file:///path/to/sample.wav';
const options = { language: 'en' };
const [stop, promise] = whisperContext.transcribe(sampleFilePath, options);
const [result] = await promise;
console.log(result); // 输出语音转文本的结果
3. 应用案例和最佳实践
实时语音转文本
Whisper.rn 支持实时语音转文本功能。以下是一个实时语音转文本的示例:
const [stop, subscribe] = await whisperContext.transcribeRealtime(options);
subscribe(evt => {
const [isCapturing, data, processTime, recordingTime] = evt;
console.log(`Realtime transcribing: ${isCapturing ? 'ON' : 'OFF'}\n` +
`Result: ${data.result}\n\n` +
`Process time: ${processTime}ms\n` +
`Recording time: ${recordingTime}ms`);
if (!isCapturing) {
console.log('Finished realtime transcribing');
}
});
使用 Core ML 模型
在 iOS 上,你可以使用 Core ML 模型来提高性能。以下是如何使用 Core ML 模型的示例:
import { Platform } from 'react-native';
const whisperContext = await initWhisper({
filePath: require('./assets/ggml-tiny.en.bin'),
coreMLModelAsset: Platform.OS === 'ios' ? {
filename: 'ggml-tiny.en-encoder.mlmodelc',
assets: [
require('./assets/ggml-tiny.en-encoder.mlmodelc/weights/weight.bin'),
require('./assets/ggml-tiny.en-encoder.mlmodelc/model.mil'),
require('./assets/ggml-tiny.en-encoder.mlmodelc/coremldata.bin'),
],
} : undefined,
});
4. 典型生态项目
1. Expo 项目
如果你使用 Expo,你需要在项目中预构建 Whisper.rn。请参考 Expo 的指南进行配置。
2. 使用 FFmpeg 进行音频处理
在某些情况下,你可能需要使用 FFmpeg 对音频文件进行预处理。你可以使用 ffmpeg-kit-react-native 库来实现这一点。
3. 使用 React Native 状态管理
在复杂的应用中,你可能需要使用状态管理库(如 Redux 或 MobX)来管理 Whisper 的上下文和状态。
通过以上步骤,你可以在 React Native 项目中成功集成 Whisper.rn,并实现语音转文本功能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00