PEFT项目中DeepSpeed Zero3与LoRA训练中embedding层保存问题分析
2025-05-12 07:30:48作者:滑思眉Philip
问题背景
在PEFT(Parameter-Efficient Fine-Tuning)项目的最新版本中,当使用DeepSpeed Zero3优化策略进行LoRA(Low-Rank Adaptation)训练时,开发人员发现一个关键问题:当配置modules_to_save参数来保存embedding层(embed_tokens)和语言模型头部(lm_head)时,这些层在保存的适配器模型文件中变成了空张量,而非预期的实际权重值。
问题现象
具体表现为:
- 训练过程可以正常完成,没有报错
- 但在尝试合并模型时,会出现张量形状不匹配的错误
- 检查保存的
adapter_model.safetensors文件,发现embed_tokens和lm_head对应的张量确实存在,但形状为0,即空张量
技术分析
根本原因
通过代码调试发现,这一问题源于PEFT项目中get_peft_model_state_dict函数的变更。在之前的版本中,该函数包含专门处理modules_to_save的逻辑,能够正确保存这些模块的权重。但在最新版本中,这部分代码被移除,替换为使用AuxiliaryTrainingWrapper的处理逻辑。
DeepSpeed Zero3的影响
DeepSpeed Zero3是一种内存优化技术,它会将模型参数、梯度和优化器状态分区到不同的GPU上。这种分布式策略可能导致:
- 参数在不同设备间的分布
- 需要特殊的处理来收集和保存完整的参数
- 对
modules_to_save这类特殊参数的处理可能出现边缘情况
代码变更对比
旧版本处理方式:
if getattr(model, "modules_to_save", None) is not None:
for key, value in state_dict.items():
if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save):
to_return[key.replace("modules_to_save.", "")] = value
新版本处理方式:
for name, module in model.named_modules():
if isinstance(module, AuxiliaryTrainingWrapper):
to_return.update({f"{name}.{k}": v for k, v in module.adapter_state_dict(adapter_name).items()})
解决方案
临时解决方案是恢复旧版本中处理modules_to_save的代码逻辑。但更完善的解决方案应该考虑:
- 确保与DeepSpeed Zero3的兼容性
- 统一参数保存的处理方式
- 添加针对此情况的测试用例
- 可能需要修改
AuxiliaryTrainingWrapper的实现,使其能够正确处理modules_to_save参数
最佳实践建议
对于使用PEFT+DeepSpeed Zero3进行模型训练的用户,建议:
- 在配置
modules_to_save时进行验证性测试 - 检查保存的适配器模型文件,确认关键参数是否正确保存
- 关注PEFT项目的更新,及时获取官方修复
- 在关键训练前,先进行小规模测试验证整个流程
总结
这一问题揭示了参数高效微调技术与分布式训练框架集成时的复杂性。特别是在处理需要特殊保存的模块时,需要考虑框架间的交互和参数分发机制。随着PEFT技术的普及,这类集成问题将越来越受到关注,需要开发者和用户共同注意。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694