PEFT项目中DeepSpeed Zero3与LoRA训练中embedding层保存问题分析
2025-05-12 20:12:40作者:滑思眉Philip
问题背景
在PEFT(Parameter-Efficient Fine-Tuning)项目的最新版本中,当使用DeepSpeed Zero3优化策略进行LoRA(Low-Rank Adaptation)训练时,开发人员发现一个关键问题:当配置modules_to_save参数来保存embedding层(embed_tokens)和语言模型头部(lm_head)时,这些层在保存的适配器模型文件中变成了空张量,而非预期的实际权重值。
问题现象
具体表现为:
- 训练过程可以正常完成,没有报错
 - 但在尝试合并模型时,会出现张量形状不匹配的错误
 - 检查保存的
adapter_model.safetensors文件,发现embed_tokens和lm_head对应的张量确实存在,但形状为0,即空张量 
技术分析
根本原因
通过代码调试发现,这一问题源于PEFT项目中get_peft_model_state_dict函数的变更。在之前的版本中,该函数包含专门处理modules_to_save的逻辑,能够正确保存这些模块的权重。但在最新版本中,这部分代码被移除,替换为使用AuxiliaryTrainingWrapper的处理逻辑。
DeepSpeed Zero3的影响
DeepSpeed Zero3是一种内存优化技术,它会将模型参数、梯度和优化器状态分区到不同的GPU上。这种分布式策略可能导致:
- 参数在不同设备间的分布
 - 需要特殊的处理来收集和保存完整的参数
 - 对
modules_to_save这类特殊参数的处理可能出现边缘情况 
代码变更对比
旧版本处理方式:
if getattr(model, "modules_to_save", None) is not None:
    for key, value in state_dict.items():
        if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save):
            to_return[key.replace("modules_to_save.", "")] = value
新版本处理方式:
for name, module in model.named_modules():
    if isinstance(module, AuxiliaryTrainingWrapper):
        to_return.update({f"{name}.{k}": v for k, v in module.adapter_state_dict(adapter_name).items()})
解决方案
临时解决方案是恢复旧版本中处理modules_to_save的代码逻辑。但更完善的解决方案应该考虑:
- 确保与DeepSpeed Zero3的兼容性
 - 统一参数保存的处理方式
 - 添加针对此情况的测试用例
 - 可能需要修改
AuxiliaryTrainingWrapper的实现,使其能够正确处理modules_to_save参数 
最佳实践建议
对于使用PEFT+DeepSpeed Zero3进行模型训练的用户,建议:
- 在配置
modules_to_save时进行验证性测试 - 检查保存的适配器模型文件,确认关键参数是否正确保存
 - 关注PEFT项目的更新,及时获取官方修复
 - 在关键训练前,先进行小规模测试验证整个流程
 
总结
这一问题揭示了参数高效微调技术与分布式训练框架集成时的复杂性。特别是在处理需要特殊保存的模块时,需要考虑框架间的交互和参数分发机制。随着PEFT技术的普及,这类集成问题将越来越受到关注,需要开发者和用户共同注意。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445