PEFT项目中DeepSpeed Zero3与LoRA训练中embedding层保存问题分析
2025-05-12 07:14:25作者:滑思眉Philip
问题背景
在PEFT(Parameter-Efficient Fine-Tuning)项目的最新版本中,当使用DeepSpeed Zero3优化策略进行LoRA(Low-Rank Adaptation)训练时,开发人员发现一个关键问题:当配置modules_to_save
参数来保存embedding层(embed_tokens
)和语言模型头部(lm_head
)时,这些层在保存的适配器模型文件中变成了空张量,而非预期的实际权重值。
问题现象
具体表现为:
- 训练过程可以正常完成,没有报错
- 但在尝试合并模型时,会出现张量形状不匹配的错误
- 检查保存的
adapter_model.safetensors
文件,发现embed_tokens
和lm_head
对应的张量确实存在,但形状为0,即空张量
技术分析
根本原因
通过代码调试发现,这一问题源于PEFT项目中get_peft_model_state_dict
函数的变更。在之前的版本中,该函数包含专门处理modules_to_save
的逻辑,能够正确保存这些模块的权重。但在最新版本中,这部分代码被移除,替换为使用AuxiliaryTrainingWrapper
的处理逻辑。
DeepSpeed Zero3的影响
DeepSpeed Zero3是一种内存优化技术,它会将模型参数、梯度和优化器状态分区到不同的GPU上。这种分布式策略可能导致:
- 参数在不同设备间的分布
- 需要特殊的处理来收集和保存完整的参数
- 对
modules_to_save
这类特殊参数的处理可能出现边缘情况
代码变更对比
旧版本处理方式:
if getattr(model, "modules_to_save", None) is not None:
for key, value in state_dict.items():
if any(f"{module_name}.modules_to_save.{adapter_name}" in key for module_name in model.modules_to_save):
to_return[key.replace("modules_to_save.", "")] = value
新版本处理方式:
for name, module in model.named_modules():
if isinstance(module, AuxiliaryTrainingWrapper):
to_return.update({f"{name}.{k}": v for k, v in module.adapter_state_dict(adapter_name).items()})
解决方案
临时解决方案是恢复旧版本中处理modules_to_save
的代码逻辑。但更完善的解决方案应该考虑:
- 确保与DeepSpeed Zero3的兼容性
- 统一参数保存的处理方式
- 添加针对此情况的测试用例
- 可能需要修改
AuxiliaryTrainingWrapper
的实现,使其能够正确处理modules_to_save
参数
最佳实践建议
对于使用PEFT+DeepSpeed Zero3进行模型训练的用户,建议:
- 在配置
modules_to_save
时进行验证性测试 - 检查保存的适配器模型文件,确认关键参数是否正确保存
- 关注PEFT项目的更新,及时获取官方修复
- 在关键训练前,先进行小规模测试验证整个流程
总结
这一问题揭示了参数高效微调技术与分布式训练框架集成时的复杂性。特别是在处理需要特殊保存的模块时,需要考虑框架间的交互和参数分发机制。随着PEFT技术的普及,这类集成问题将越来越受到关注,需要开发者和用户共同注意。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133