MNN框架中多模态输入数据格式处理指南
2025-05-22 02:37:30作者:裘晴惠Vivianne
背景介绍
在深度学习模型部署过程中,数据格式的正确处理是确保模型正常运行的关键因素。MNN作为阿里巴巴开源的轻量级推理引擎,在处理多模态输入(如图像、音频等)时,开发者经常会遇到数据格式设置的问题。本文将深入探讨MNN框架中如何处理包含多种输入类型的模型,特别是音频数据的格式设置问题。
MNN支持的数据格式类型
MNN框架主要支持三种数据格式:
- NHWC(0):批次数量(N)、高度(H)、宽度(W)、通道数(C)
- NCHW(1):批次数量(N)、通道数(C)、高度(H)、宽度(W)
- NC4HW4(2):批次数量(N)、通道数分组为4(C4)、高度(H)、宽度(W)
这些格式主要针对图像类数据设计,当模型包含音频等非图像输入时,开发者需要特别注意格式设置。
多模态输入模型的处理方法
当模型包含多个输入源(如图像+音频)时,正确的处理步骤如下:
1. 检查模型输入信息
使用MNN提供的工具GetMNNInfo可以查看模型的详细输入信息:
Model Inputs:
[ source_img ]: dimensionFormat: NC4HW4, size: [ 1,3,416,320 ], type is float
[ ref_img ]: dimensionFormat: NC4HW4, size: [ 1,15,416,320 ], type is float
[ audio_feature ]: dimensionFormat: NC4HW4, size: [ 1,29,5 ], type is float
2. 程序运行时获取输入信息
在代码中可以通过以下方式获取输入张量的详细信息:
auto input = net->getSessionInput(session, "audio_feature");
MNN_PRINT("audio_feature shape size: %d, ", input->shape().size());
for (int i = 0; i < input->shape().size(); ++i) {
MNN_PRINT("%d --> dim:%d, ", i, input->shape()[i]);
}
MNN_PRINT("type:%d (0:NHWC, 1:NCHW, 2:NC4HW4)", input->getDimensionType());
3. 数据格式的注意事项
需要注意的是,MNN框架中存在一个历史遗留问题:getDimensionType()方法会将NC4HW4格式返回为NCHW(类型1)。因此,不能完全依赖这个方法的返回值来判断实际的数据格式。
音频数据的特殊处理
对于音频特征输入(如[1,29,5]的形状),虽然工具显示为NC4HW4格式,但在实际处理时:
- 可以按照NCHW格式处理,将29视为通道数,5视为特征长度
- 数据排布应为连续内存,无需考虑特殊的NC4HW4内存布局
- 确保输入数据的形状与模型期望的形状完全一致
最佳实践建议
-
模型转换时:使用
--keepInputFormat参数,保持原始模型的格式(ONNX通常为NCHW,TensorFlow通常为NHWC) -
代码实现时:
- 优先参考
GetMNNInfo工具的输出 - 对于非图像输入,可以统一按NCHW格式处理
- 注意实际内存布局与API返回值可能存在的差异
- 优先参考
-
性能优化:
- 对于图像输入,NC4HW4格式通常有更好的性能表现
- 对于音频等一维/二维特征,使用NCHW格式即可
总结
在MNN框架中处理多模态输入时,理解框架的数据格式设计原理至关重要。虽然MNN主要针对图像处理优化了数据格式,但通过合理的方法,同样可以正确处理音频等非图像输入。开发者应当结合工具输出和实际测试,确保数据格式设置正确,从而保证模型的推理效果和性能。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
211
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212