MNN项目中Qwen-1_8B-Chat模型ONNX转换问题分析
在MNN深度学习推理框架的使用过程中,用户尝试将Qwen-1_8B-Chat大型语言模型转换为ONNX格式时遇到了问题。本文将从技术角度深入分析这一转换过程中的关键问题及其解决方案。
问题现象
当用户按照MNN官方文档指引,使用testMNNFromOnnx.py脚本验证转换后的ONNX模型时,程序报错终止。错误信息显示在运行Concat节点时出现了形状不匹配的问题,具体表现为{1,1,16,128}与{1,2,16,128}的形状不一致。
技术背景
MNN作为阿里巴巴开源的轻量级深度学习推理引擎,支持多种模型格式的转换和部署。ONNX作为中间表示格式,在模型转换流程中扮演着重要角色。Qwen-1_8B-Chat是通义千问系列的大型语言模型,具有18亿参数规模。
问题根源分析
-
输入形状不匹配:错误信息明确指出在执行Concat操作时,预期的输入形状与实际提供的形状不一致。这是典型的张量维度不匹配问题。
-
动态形状处理:大型语言模型通常采用动态形状设计以适应不同长度的输入序列,而测试脚本可能使用了固定的输入形状。
-
注意力机制实现:Qwen模型的注意力层实现可能包含特殊的拼接操作,需要特定的输入形状配置。
解决方案建议
-
修改测试脚本:根据模型实际需求调整测试脚本中的输入形状配置,确保与模型期望的输入维度一致。
-
直接转换使用:对于已验证的模型架构,可以跳过ONNX验证步骤直接转换为MNN格式使用,这在大多数情况下是可行的。
-
自定义输入生成:为测试脚本实现更智能的输入生成逻辑,能够根据模型结构自动适配正确的输入形状。
最佳实践
对于大型语言模型的转换部署,建议开发者:
-
充分理解模型架构特点,特别是注意力机制等关键组件的实现方式。
-
在转换过程中关注动态形状的处理,确保推理时能够适应不同长度的输入。
-
对于已验证的模型转换流程,可以适当简化验证步骤以提高效率。
-
保持MNN框架的及时更新,以获取对最新模型架构的最佳支持。
通过以上分析和建议,开发者可以更顺利地完成Qwen等大型语言模型在MNN框架上的部署工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00