Apache Ignite 查询优化中的 UNION_MERGE 规则内存问题分析
在分布式数据库系统 Apache Ignite 的查询优化过程中,我们发现了一个可能导致内存爆炸的性能问题。这个问题与查询计划优化器中的 UNION_MERGE 规则直接相关,当处理包含大量 UNION ALL 和子查询的复杂 SQL 时,会产生严重的性能瓶颈。
问题背景
在 Ignite 的查询优化阶段,PlannerPhase#OPTIMIZATION 会应用一系列优化规则来改进查询执行计划。其中 CoreRules.UNION_MERGE 规则的设计初衷是合并相邻的 UNION ALL 操作,减少中间结果集的生成,从而提高查询效率。然而,在实际应用场景中,这个优化规则在某些特定情况下会产生反效果。
问题现象
当 SQL 查询包含多个 UNION ALL 操作和复杂子查询时,应用 UNION_MERGE 规则后会生成一个包含大量子节点的 IgniteUnionAll 操作符。例如,在一个包含9个子节点的 UNION ALL 操作中,如果每个子节点有7种可能的执行计划变体,那么总的计划组合数将达到7的9次方(约4000万种可能性)。
这种组合爆炸会导致以下问题:
- 查询优化器的计划空间急剧膨胀
- TraitUtils#fillRecursive 方法中的结果 HashSet 占用大量内存
- Java 程序因频繁垃圾回收(GC)而陷入停滞状态
技术原理分析
Ignite 的查询优化器基于 Apache Calcite 框架构建,采用基于成本的优化(CBO)策略。在优化过程中,系统会枚举各种可能的执行计划变体,计算它们的成本,并选择最优方案。
UNION_MERGE 规则的工作原理是将多个连续的 UNION ALL 操作合并为一个操作,减少中间结果的物化。例如:
SELECT * FROM (SELECT * FROM A UNION ALL SELECT * FROM B) UNION ALL SELECT * FROM C
会被优化为:
SELECT * FROM A UNION ALL SELECT * FROM B UNION ALL SELECT * FROM C
这种优化在简单场景下确实能提高性能,但当 UNION ALL 操作数量较多且每个分支包含复杂子查询时,合并后的 UNION ALL 操作会包含大量子节点,导致计划空间组合爆炸。
解决方案
针对这个问题,我们建议采取以下措施:
-
禁用相关优化规则:在查询优化阶段完全禁用可能导致问题的规则,包括:
- CoreRules.UNION_MERGE
- CoreRules.MINUS_MERGE
- CoreRules.INTERSECT_MERGE
-
引入启发式限制:可以考虑在规则应用中添加限制条件,例如:
- 当 UNION ALL 操作超过一定数量时禁用合并
- 当子查询复杂度超过阈值时禁用合并
-
内存使用监控:在优化过程中加入内存使用监控机制,当检测到内存压力时自动回退到保守策略
实施建议
对于使用 Ignite 的开发人员,如果遇到类似性能问题,可以:
- 检查查询计划中是否存在合并了大量子节点的 UNION ALL 操作
- 通过配置临时禁用相关优化规则进行验证
- 考虑重写查询,将大型 UNION ALL 操作拆分为多个阶段
总结
查询优化是一把双刃剑,在提高大多数场景性能的同时,也可能在特定情况下导致严重问题。Apache Ignite 中的 UNION_MERGE 规则问题提醒我们,在分布式数据库系统的优化器设计中,需要更加谨慎地处理可能导致组合爆炸的优化策略,并在规则应用中加入适当的限制条件和保护机制。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









