Apache Arrow-RS项目中Parquet写入器内存跟踪问题分析
2025-06-27 09:18:07作者:温艾琴Wonderful
Apache Arrow-RS项目中的Parquet写入器在处理固定大小列表(FixedSizeList)数据类型时存在内存使用量跟踪不准确的问题。本文将深入分析该问题的技术细节、影响范围以及可能的解决方案。
问题背景
在Apache Arrow-RS项目中,ArrowWriter组件负责将数据写入Parquet格式文件。该组件提供了memory_size()方法来跟踪当前内存使用情况,这对于内存敏感的应用场景尤为重要。然而,在处理FixedSizeList类型数据时,该方法未能正确反映实际内存消耗。
问题表现
当写入包含FixedSizeList类型数据的RecordBatch时,ArrowWriter报告的内存使用量保持恒定,而实际上底层缓冲区正在不断增长。这种不一致性可能导致:
- 内存监控失效,无法准确判断当前内存压力
- 自动刷新机制可能无法按预期工作
- 在内存受限环境中可能引发OOM(内存溢出)问题
技术分析
问题的核心在于GenericColumnWriter组件的内存计算逻辑存在缺陷。当前实现没有正确考虑以下内存消耗:
- 等待字典页刷新的数据页(data_pages)所占用的内存
- 编码器(encoder)内部缓冲区的内存使用
- 已写入但尚未刷新的字节数
正确的内存计算应该包含这三个部分的总和,而当前实现可能只考虑了其中一部分。
解决方案建议
针对该问题,建议修改GenericColumnWriter::memory_size()方法的实现,使其包含完整的内存计算:
pub(crate) fn memory_size(&self) -> usize {
self.data_pages.iter().map(|x| x.data().len()).sum::<usize>()
+ self.column_metrics.total_bytes_written as usize
+ self.encoder.estimated_memory_size()
}
这种修改将确保:
- 所有待处理数据页的内存被准确计算
- 已写入但未刷新的数据量被计入
- 编码器内部状态的内存使用被纳入统计
影响评估
该问题主要影响以下场景:
- 大数据量FixedSizeList类型数据的写入
- 依赖memory_size()进行内存监控的应用
- 需要精确控制内存使用的长时间运行任务
对于普通的小规模数据写入或非FixedSizeList类型数据,该问题影响较小。
测试验证
为验证修复效果,建议添加专门的测试用例,模拟以下场景:
- 大规模FixedSizeList数据的连续写入
- 内存使用量的增长曲线验证
- 自动刷新触发的准确性测试
测试应确保内存报告值与实际消耗保持一致,且刷新行为符合预期。
总结
Apache Arrow-RS项目中Parquet写入器的内存跟踪问题虽然特定于FixedSizeList类型,但对于大数据处理场景可能产生重要影响。通过完善内存计算逻辑,可以提升组件的可靠性和可观测性,为上层应用提供更准确的内存使用信息。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120