Arrow-RS项目中的Parquet统计信息截断优化
Apache Arrow-RS项目是Rust语言实现的Arrow内存格式和数据处理生态系统。在Arrow-RS中处理Parquet文件时,统计信息的存储方式可能会引发一些性能问题,特别是在处理大型字符串或二进制数据列时。
问题背景
在Parquet文件格式中,默认情况下,Arrow-RS写入器会为启用了统计信息的列保存完整的min和max值。这些统计信息不仅会存储在文件级别的元数据中,还会出现在每个页面的头部。当处理大型二进制或字符串列(如JSON大对象)时,这会导致存储两个(min和max)可能非常大的值,从而产生显著的存储开销。
问题影响
这种设计在某些极端情况下会导致严重的存储膨胀。例如,在一个测试案例中,一个3MB的Parquet文件中,有2.1MB都被统计信息占用。这种情况在处理包含大量重复或大型字符串值的列时尤为明显。
现有解决方案
Arrow-RS目前提供了两个方法来控制统计值的最大长度:
WriterPropertiesBuilder::set_statistics_truncate_length- 控制统计信息的截断长度WriterPropertiesBuilder::set_column_index_truncate_length- 控制列索引的截断长度
然而,这些参数的默认值目前设置为None(即无限制),这导致了上述的存储问题。
优化建议
技术专家建议将默认的统计信息截断长度设置为一个合理的非None值(如128字节)。这个长度足够捕获所有原始数据类型和字符串的排序信息,同时避免了存储过大的值。
128字节的选择基于以下考虑:
- 足够容纳所有原始数据类型
- 能够保持字符串的排序特性
- 显著减少大型字符串列的存储开销
深入讨论
在讨论过程中,专家还提出了关于统计信息存储策略的更广泛思考。Parquet规范实际上建议,如果已经编写了页面索引,就不需要再编写页面级别的统计信息。这引发了对当前EnabledStatistics枚举设计的重新评估。
可能的改进方向包括:
- 添加新的统计信息启用模式,如
ChunkAndIndex,只写入块级别和偏移/列索引,而不在页面头部写入统计信息 - 更精细地控制不同类型统计信息的生成和存储
实施进展
目前已经提交了相关PR来修改默认的截断长度设置。同时,关于统计信息存储策略的长期改进已经作为一个单独的问题进行跟踪讨论。
总结
通过对Parquet统计信息存储的优化,Arrow-RS项目能够更好地处理大型字符串和二进制列,避免存储膨胀问题。这一改进不仅提高了存储效率,也为未来更精细的统计信息控制奠定了基础。对于使用Arrow-RS处理大型数据集的开发者来说,这一优化将显著改善他们的使用体验和系统性能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00