Spark Operator 项目探讨:扩展 kube-scheduler 作为批处理调度器的可行性分析
在 Kubernetes 生态系统中,GoogleCloudPlatform 的 spark-on-k8s-operator 项目为 Apache Spark 工作负载提供了原生支持。近期社区中关于是否支持扩展 kube-scheduler 作为批处理调度器的讨论值得深入探讨。
背景与现状
目前 spark-on-k8s-operator 主要支持 Volcano 和 Yunikorn 作为批处理调度器。这两种调度器都能有效处理 Spark 这类批处理工作负载的调度需求,特别是对资源组调度(coscheduling)的支持。
扩展 kube-scheduler 是 Kubernetes SIG 维护的一个插件项目,它通过 PodGroup CRD 实现了类似的资源组调度功能。这种实现方式与 Kubernetes 原生调度器深度集成,理论上可以提供更轻量级的批处理调度方案。
技术价值分析
-
架构优势:扩展 kube-scheduler 作为 Kubernetes 原生的扩展方案,避免了引入额外调度器组件带来的运维复杂度。
-
功能对等:通过 PodGroup 机制,它能够实现与 Volcano/Yunikorn 类似的资源组调度能力,确保 Spark 作业的所有 executor 能够同时调度或都不调度。
-
生态系统整合:作为 Kubernetes 官方维护的项目,它与 Kubernetes 版本演进保持同步,长期维护性更有保障。
实现考量
要实现这一功能,需要考虑以下技术点:
-
CRD 兼容性:需要确保 spark-operator 能够正确处理 scheduling.x-k8s.io/v1alpha1 版本的 PodGroup 资源。
-
调度器配置:需要支持配置使用扩展调度器作为批处理调度后端,同时保持与现有调度器的兼容。
-
功能验证:需要验证扩展调度器是否能满足 Spark 作业的所有调度需求,特别是大规模作业的场景。
未来展望
这一改进将为用户提供更多调度器选择,特别是对那些希望保持 Kubernetes 原生性的用户群体。同时,这也体现了 spark-on-k8s-operator 项目对 Kubernetes 生态系统发展的积极响应。
对于开发者而言,理解不同调度器后端的特性和适用场景,将有助于为 Spark on Kubernetes 部署选择最合适的调度方案。随着 Kubernetes 调度能力的不断增强,未来可能会出现更多值得集成的调度扩展方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00