Spark Operator 项目探讨:扩展 kube-scheduler 作为批处理调度器的可行性分析
在 Kubernetes 生态系统中,GoogleCloudPlatform 的 spark-on-k8s-operator 项目为 Apache Spark 工作负载提供了原生支持。近期社区中关于是否支持扩展 kube-scheduler 作为批处理调度器的讨论值得深入探讨。
背景与现状
目前 spark-on-k8s-operator 主要支持 Volcano 和 Yunikorn 作为批处理调度器。这两种调度器都能有效处理 Spark 这类批处理工作负载的调度需求,特别是对资源组调度(coscheduling)的支持。
扩展 kube-scheduler 是 Kubernetes SIG 维护的一个插件项目,它通过 PodGroup CRD 实现了类似的资源组调度功能。这种实现方式与 Kubernetes 原生调度器深度集成,理论上可以提供更轻量级的批处理调度方案。
技术价值分析
-
架构优势:扩展 kube-scheduler 作为 Kubernetes 原生的扩展方案,避免了引入额外调度器组件带来的运维复杂度。
-
功能对等:通过 PodGroup 机制,它能够实现与 Volcano/Yunikorn 类似的资源组调度能力,确保 Spark 作业的所有 executor 能够同时调度或都不调度。
-
生态系统整合:作为 Kubernetes 官方维护的项目,它与 Kubernetes 版本演进保持同步,长期维护性更有保障。
实现考量
要实现这一功能,需要考虑以下技术点:
-
CRD 兼容性:需要确保 spark-operator 能够正确处理 scheduling.x-k8s.io/v1alpha1 版本的 PodGroup 资源。
-
调度器配置:需要支持配置使用扩展调度器作为批处理调度后端,同时保持与现有调度器的兼容。
-
功能验证:需要验证扩展调度器是否能满足 Spark 作业的所有调度需求,特别是大规模作业的场景。
未来展望
这一改进将为用户提供更多调度器选择,特别是对那些希望保持 Kubernetes 原生性的用户群体。同时,这也体现了 spark-on-k8s-operator 项目对 Kubernetes 生态系统发展的积极响应。
对于开发者而言,理解不同调度器后端的特性和适用场景,将有助于为 Spark on Kubernetes 部署选择最合适的调度方案。随着 Kubernetes 调度能力的不断增强,未来可能会出现更多值得集成的调度扩展方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00