Spark Operator 项目探讨:扩展 kube-scheduler 作为批处理调度器的可行性分析
在 Kubernetes 生态系统中,GoogleCloudPlatform 的 spark-on-k8s-operator 项目为 Apache Spark 工作负载提供了原生支持。近期社区中关于是否支持扩展 kube-scheduler 作为批处理调度器的讨论值得深入探讨。
背景与现状
目前 spark-on-k8s-operator 主要支持 Volcano 和 Yunikorn 作为批处理调度器。这两种调度器都能有效处理 Spark 这类批处理工作负载的调度需求,特别是对资源组调度(coscheduling)的支持。
扩展 kube-scheduler 是 Kubernetes SIG 维护的一个插件项目,它通过 PodGroup CRD 实现了类似的资源组调度功能。这种实现方式与 Kubernetes 原生调度器深度集成,理论上可以提供更轻量级的批处理调度方案。
技术价值分析
-
架构优势:扩展 kube-scheduler 作为 Kubernetes 原生的扩展方案,避免了引入额外调度器组件带来的运维复杂度。
-
功能对等:通过 PodGroup 机制,它能够实现与 Volcano/Yunikorn 类似的资源组调度能力,确保 Spark 作业的所有 executor 能够同时调度或都不调度。
-
生态系统整合:作为 Kubernetes 官方维护的项目,它与 Kubernetes 版本演进保持同步,长期维护性更有保障。
实现考量
要实现这一功能,需要考虑以下技术点:
-
CRD 兼容性:需要确保 spark-operator 能够正确处理 scheduling.x-k8s.io/v1alpha1 版本的 PodGroup 资源。
-
调度器配置:需要支持配置使用扩展调度器作为批处理调度后端,同时保持与现有调度器的兼容。
-
功能验证:需要验证扩展调度器是否能满足 Spark 作业的所有调度需求,特别是大规模作业的场景。
未来展望
这一改进将为用户提供更多调度器选择,特别是对那些希望保持 Kubernetes 原生性的用户群体。同时,这也体现了 spark-on-k8s-operator 项目对 Kubernetes 生态系统发展的积极响应。
对于开发者而言,理解不同调度器后端的特性和适用场景,将有助于为 Spark on Kubernetes 部署选择最合适的调度方案。随着 Kubernetes 调度能力的不断增强,未来可能会出现更多值得集成的调度扩展方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01