Langfuse v3.49.0发布:全新仪表盘与评分系统升级
Langfuse是一个开源的LLM应用监控与分析平台,它帮助开发者跟踪、分析和优化基于大语言模型的应用程序。最新发布的v3.49.0版本带来了多项重要更新,特别是在自定义仪表盘和评分系统方面有了显著改进。
核心功能增强
自定义仪表盘进入Beta阶段
本次更新最引人注目的是全新的自定义仪表盘功能进入Beta测试阶段。开发者现在可以创建完全个性化的分析视图,通过拖拽方式自由组合各种可视化组件。这个功能特别适合需要监控特定业务指标或关注特定模型性能的团队。
仪表盘系统支持跨视图的统一过滤器,这意味着用户可以在一个地方设置过滤条件,这些条件会自动应用到仪表盘中的所有组件。例如,可以设置只查看特定环境或特定用户群体的数据,所有图表都会同步更新。
评分系统元数据支持
评分系统现在支持元数据字段,这是一个重要的扩展。开发者可以在评分中添加额外的上下文信息,比如评分者的身份、评分时的环境参数等。这些元数据不会影响评分本身,但为后续分析提供了更丰富的上下文。
性能与稳定性改进
在数据处理方面,团队对批量导出功能进行了多项优化。包括增加了页面大小配置选项(默认设置为500),提高了导出超时限制,并增强了重试机制。这些改进显著提升了大规模数据导出的可靠性。
对于S3存储的删除操作也增加了重试逻辑,减少了因临时网络问题导致的操作失败。项目删除流程的日志记录和重试机制也得到了加强,使系统管理员能更好地跟踪和管理资源清理过程。
开发者体验优化
新版本在开发者工具方面也有所提升。Playground现在能更好地处理工具调用的undefined内容,避免了因此导致的界面错误。模型表中提供的模型名称显示问题也得到了修复。
对于使用OpenTelemetry集成的开发者,新版本增加了一个虚拟路由,可以接收所有的OTel指标调用。这个功能虽然看似简单,但在调试和开发阶段非常有用。
技术架构演进
在技术架构层面,团队继续推进领域驱动的代码重构。这个版本完成了评分(score)领域的独立封装,以及观测(observation)领域的重构。这种架构改进虽然对最终用户不可见,但为未来的功能扩展和维护打下了更好的基础。
总结
Langfuse v3.49.0通过引入自定义仪表盘和增强评分系统,进一步巩固了其作为LLM应用监控平台的地位。性能优化和架构改进则确保了平台能够稳定处理大规模数据。对于需要深入分析LLM应用性能的团队来说,这些更新提供了更强大的工具和更可靠的基础设施。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00