Langfuse项目发布v3.61.0版本:自定义仪表盘正式版上线
Langfuse是一个开源的观测性平台,专注于为AI应用提供强大的监控和分析能力。该项目通过收集和分析AI应用运行时的各种指标和日志,帮助开发者更好地理解和优化他们的AI系统。
自定义仪表盘功能正式发布
本次发布的v3.61.0版本标志着自定义仪表盘功能正式从beta阶段毕业,成为Langfuse平台的核心功能之一。这个功能允许用户根据自身需求创建个性化的数据可视化面板,极大地提升了数据分析和监控的灵活性。
主要功能增强
-
大数字图表类型:新增了专门用于展示关键指标的大数字(big number)图表类型,这种图表特别适合在仪表盘上突出显示最重要的核心指标。
-
可拖拽组件:仪表盘上的各个组件现在支持拖拽操作,用户可以自由调整组件的位置和布局,打造完全符合个人工作习惯的仪表盘。
-
预置模板:系统提供了多个由Langfuse团队精心设计的预置仪表盘模板,这些模板覆盖了常见的监控场景,用户可以基于这些模板快速创建专业级的仪表盘。
用户体验优化
-
侧边栏通知过期机制:实现了侧边栏通知的可选过期功能,使得管理员可以控制通知的显示时长,避免过时信息干扰用户。
-
表格显示优化:在追踪(traces)和观测(observations)表格中,对名称列进行了截断处理,提高了表格的可读性和空间利用率。
技术改进与修复
-
仪表盘迁移处理:改进了仪表盘大小调整的迁移逻辑,现在能够正确处理空部件列表的情况,提高了系统的健壮性。
-
认证安全增强:优化了多租户SSO的登录域名强制验证逻辑,确保只在必要场景下应用域名验证,提升了安全性的同时不影响用户体验。
-
性能监控:新增了指标来测量按ID查询的时效性,帮助团队更好地监控和优化系统性能。
总结
Langfuse v3.61.0版本的发布,特别是自定义仪表盘功能的正式推出,标志着该项目在数据可视化和监控能力上又迈出了重要一步。这些改进不仅增强了平台的功能性,也显著提升了用户体验。对于依赖AI系统的团队来说,这些功能将帮助他们更高效地监控和分析系统运行状况,从而做出更明智的优化决策。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00