Transformer Rankers——基于预训练变换器的排名实验库
项目介绍
Transformer Rankers 是一个专为使用预训练变换器进行排名实验而设计的库。该库由一名博士生在2019至2022年间开发,并主要聚焦于对话响应排序任务的研究。尽管该项目目前可能不再积极维护,但它支持多种数据集和任务,包括社区问答、相似问题检索、passage检索等,并提供了一个强大的工具箱来处理这些任务中的排名问题。此外,它已被用于几篇学术论文中,展示了其在神经学习到排名模型评估和弱监督学习上的应用价值。
项目快速启动
要迅速开始使用Transformer Rankers,遵循以下步骤:
环境准备
首先,确保你的系统已安装Git和Python3。然后,执行以下命令以克隆项目仓库并设置虚拟环境:
git clone https://github.com/Guzpenha/transformer_rankers.git
cd transformer_rankers
python3 -m venv env
source env/bin/activate
安装库及依赖
接下来,安装Transformer Rankers库及其所需的第三方包:
pip install -e .
pip install -r requirements.txt
示例:微调BERT以进行社区问答
作为快速入门,你可以尝试使用BERT进行点对点微调,适合社区问答场景:
# 此处假设代码示例应表示为一个简化的脚本过程,实际细节需参考项目文档。
from transformer_rankers import Trainer, DATASETS, evaluate_models
from transformers import BertTokenizer
# 初始化模型和tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
dataset = DATASETS['mantis'](tokenizer)
trainer = Trainer(model=...,
dataset=dataset.train,
eval_dataset=dataset.val,
... # 根据具体需求配置其他参数
)
# 训练模型
trainer.fit()
# 预测并评估
preds, labels, _ = trainer.test()
res = evaluate_models(preds, labels, metrics=['ndcg_cut_10'])
for metric, v in res.items():
print(f"Test {metric} : {v:.4f}")
请注意,以上代码段是概念性的,具体实现时需参照项目文档详细配置模型和训练参数。
应用案例和最佳实践
Transformer Rankers在多个场景下被应用,如对话搜索中的校准和不确定性研究,以及弱监督学习下的标签平滑。通过微调模型(如BERT或T5)来解决社区问答、对话响应排序等问题,是常见的应用场景。最佳实践通常包括选择合适的数据集处理器、适当调整负样本采样策略,并监控模型的性能指标,如NDCG和召回率。
典型生态项目
虽然Transformer Rankers本身是个独立的库,但它的应用紧密关联于自然语言处理和信息检索领域的其他开源工具和框架,例如Pyserini用于高效的BM25负样本抽取,或Hugging Face Transformers库,提供了丰富的预训练模型供实验使用。这些工具共同构建了一个强大的生态系统,促进了基于变换器的排名模型的发展和应用。
以上就是关于Transformer Rankers项目的一个基本概览和快速启动指南。深入探索这个库,可以发掘更多高级特性和定制化方法来适应特定的排名任务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00