首页
/ Transformer Rankers——基于预训练变换器的排名实验库

Transformer Rankers——基于预训练变换器的排名实验库

2024-09-11 15:59:31作者:龚格成

项目介绍

Transformer Rankers 是一个专为使用预训练变换器进行排名实验而设计的库。该库由一名博士生在2019至2022年间开发,并主要聚焦于对话响应排序任务的研究。尽管该项目目前可能不再积极维护,但它支持多种数据集和任务,包括社区问答、相似问题检索、passage检索等,并提供了一个强大的工具箱来处理这些任务中的排名问题。此外,它已被用于几篇学术论文中,展示了其在神经学习到排名模型评估和弱监督学习上的应用价值。

项目快速启动

要迅速开始使用Transformer Rankers,遵循以下步骤:

环境准备

首先,确保你的系统已安装Git和Python3。然后,执行以下命令以克隆项目仓库并设置虚拟环境:

git clone https://github.com/Guzpenha/transformer_rankers.git
cd transformer_rankers
python3 -m venv env
source env/bin/activate

安装库及依赖

接下来,安装Transformer Rankers库及其所需的第三方包:

pip install -e .
pip install -r requirements.txt

示例:微调BERT以进行社区问答

作为快速入门,你可以尝试使用BERT进行点对点微调,适合社区问答场景:

# 此处假设代码示例应表示为一个简化的脚本过程,实际细节需参考项目文档。
from transformer_rankers import Trainer, DATASETS, evaluate_models
from transformers import BertTokenizer

# 初始化模型和tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
dataset = DATASETS['mantis'](tokenizer)
trainer = Trainer(model=...,
                  dataset=dataset.train,
                  eval_dataset=dataset.val,
                  ...  # 根据具体需求配置其他参数
                 )

# 训练模型
trainer.fit()

# 预测并评估
preds, labels, _ = trainer.test()
res = evaluate_models(preds, labels, metrics=['ndcg_cut_10'])
for metric, v in res.items():
    print(f"Test {metric} : {v:.4f}")

请注意,以上代码段是概念性的,具体实现时需参照项目文档详细配置模型和训练参数。

应用案例和最佳实践

Transformer Rankers在多个场景下被应用,如对话搜索中的校准和不确定性研究,以及弱监督学习下的标签平滑。通过微调模型(如BERT或T5)来解决社区问答、对话响应排序等问题,是常见的应用场景。最佳实践通常包括选择合适的数据集处理器、适当调整负样本采样策略,并监控模型的性能指标,如NDCG和召回率。

典型生态项目

虽然Transformer Rankers本身是个独立的库,但它的应用紧密关联于自然语言处理和信息检索领域的其他开源工具和框架,例如Pyserini用于高效的BM25负样本抽取,或Hugging Face Transformers库,提供了丰富的预训练模型供实验使用。这些工具共同构建了一个强大的生态系统,促进了基于变换器的排名模型的发展和应用。


以上就是关于Transformer Rankers项目的一个基本概览和快速启动指南。深入探索这个库,可以发掘更多高级特性和定制化方法来适应特定的排名任务。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
180
264
cjoycjoy
一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60