Nash-Detect:基于纳什强化学习的鲁棒垃圾评论检测教程
2024-09-11 09:43:30作者:伍霜盼Ellen
项目介绍
Nash-Detect 是一个用于训练鲁棒性垃圾评论检测器的算法,该算法由一篇发表在 KDD 2020 的论文提出。它通过在垃圾制造者(攻击方)与防御者(检测器)之间进行一种极小极大游戏来训练一个由五个基础检测器组成的强大检测系统。这个项目中考虑了五种基础的垃圾邮件策略,并通过模拟这些策略合成混合策略。值得注意的是,本研究聚焦于浅层图结构和行为基础的垃圾邮件检测,未涉及文本分析或深度神经网络,但仍便于扩展到这些领域。
-
核心特点: 利用强化学习实现纳什均衡下的对抗性训练,以提高垃圾评论检测的稳健性。
项目快速启动
环境准备
确保你的开发环境满足以下条件:
- Python 3.6 或更高版本
- 安装必要的依赖包。可以通过运行以下命令安装:
git clone https://github.com/YingtongDou/Nash-Detect.git
cd Nash-Detect
pip3 install -r requirements.txt
运行示例
-
生成训练数据:首先,你需要Yelp的垃圾评论数据集。通过发送标题为“Yelp Dataset Request”的电子邮件至ytongdou@gmail.com获取数据集。获取后,在项目根目录下解压数据。
-
创建假评论:
python attack_generation.py --mode="Training"
- 计算最差性能:
python worst_case.py
- 训练模型:
python training.py
应用案例与最佳实践
在实际应用中,Nash-Detect可以作为防御机制的一部分,部署在电商平台、社交媒体平台等,以自动识别并过滤潜在的垃圾评论。最佳实践包括:
- 在部署前,应充分测试检测器对不同类型的垃圾信息的识别能力。
- 结合具体业务场景调整基础检测器的权重,以优化整体的检测效果。
- 定期更新训练数据,以适应新的垃圾评论模式。
典型生态项目
由于Nash-Detect专注于特定领域的应用——即利用强化学习在无需深度文本处理的情况下进行垃圾评论检测,其典型生态项目更多是指在类似场景下可以结合使用的工具或服务。例如,与其他在线内容审核工具集成,如利用自然语言处理库(如spaCy或NLTK)做预处理,或者与机器学习模型托管服务(如AWS SageMaker、Google Cloud AI Platform)结合,自动化部署和管理Nash-Detect模型。
注意
- 在将此项目应用于生产环境之前,务必详细测试其性能和稳定性。
- 考虑到数据隐私和安全,处理用户评论时应遵循当地法律法规。
以上就是关于Nash-Detect开源项目的基本介绍、快速启动指南、应用案例概述以及对生态系统的一些建议。希望这能够帮助您有效理解和应用该项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146