推荐开源项目:Nash-Detect - 高效的反垃圾评论检测利器
2024-06-24 13:51:22作者:胡唯隽
项目简介
Nash-Detect 是一个由KDD 2020论文《通过纳什强化学习实现稳健的垃圾评论检测》(Robust Spammer Detection by Nash Reinforcement Learning)提出的反垃圾评论检测算法的实现。该算法采用强化学习的方法,通过对抗游戏的方式训练出一个由五个基础检测器组成的稳健检测器,以抵御各种策略的垃圾评论攻击。
技术分析
Nash-Detect的核心是构建了一个在审查者与伪装者的最小最大游戏中进行训练的系统。这个系统包括五个基础的攻击策略和相应的防御者策略。通过对这些策略的组合和优化,算法能够在应对不断变化的垃圾评论方式时保持稳定的效果。值得注意的是,虽然本研究主要关注基于图形和行为特征的简单检测器,但其框架完全适用于训练深度神经网络或文本基础的垃圾评论检测器。
应用场景
Nash-Detect 在许多依赖用户评价的数据驱动服务中具有广泛的应用前景,如电子商务平台、餐饮娱乐评论系统以及社交媒体等。它能帮助这些平台识别并阻止虚假评论对真实用户体验的影响,从而维护数据的可信度,保护用户的权益。
项目特点
- 强化学习方法:通过纳什均衡理论,确保了检测器对不同攻击策略的鲁棒性。
- 多策略对抗:五种基础攻击策略和防御策略的相互作用,增强了模型适应性。
- 易扩展性:不仅限于浅层图和行为特征,可以轻松应用于深度学习和文本分析的场景。
- 全面的实验支持:提供从数据预处理到模型训练和测试的完整代码,便于快速上手和实验复现。
要开始使用Nash-Detect,您只需要安装必要的Python库,并获取Yelp Spam Review Datasets。项目结构清晰,方便理解并调整参数进行自己的实验。
引用项目
如果你在你的工作中使用了Nash-Detect,请引用以下文献:
@inproceedings{dou2020robust,
title={Robust Spammer Detection by Nash Reinforcement Learning},
author={Dou, Yingtong and Ma, Guixiang and Yu, Philip S and Xie, Sihong},
booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
year={2020}
}
总的来说,Nash-Detect是一个强大且灵活的工具,对于任何关心用户评论安全性的开发者和研究者来说,都是值得一试的优秀资源。现在就加入我们,一起提升在线社区的安全和质量吧!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5