aLRPLoss 项目使用教程
2024-09-25 11:30:17作者:苗圣禹Peter
1. 项目介绍
aLRPLoss 是一个用于目标检测的排名损失函数,旨在统一分类和定位分支的训练。该项目在 NeurIPS 2020 上发表,并提供了官方的 PyTorch 实现。aLRPLoss 通过平均定位召回精度(aLRP)损失函数,强制预测具有高置信度的对象具有更好的定位,并显著减少了超参数的数量。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Python 和 PyTorch。然后,克隆项目仓库并安装所需的依赖:
git clone https://github.com/kemaloksuz/aLRPLoss.git
cd aLRPLoss
pip install -r requirements.txt
2.2 数据集准备
aLRPLoss 基于 MMDetection,因此你需要准备相应的数据集。以下是 COCO 数据集的准备步骤:
mkdir data
cd data
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip train2017.zip
unzip val2017.zip
unzip annotations_trainval2017.zip
2.3 训练模型
使用以下命令在 4 个 GPU 上训练 aLRP Loss (GIoU+ATSS) 模型:
./tools/dist_train.sh configs/alrp_loss/alrp_loss_retinanet_r50_fpn_ATSS_100e_coco500.py 4
2.4 测试模型
训练完成后,可以使用以下命令在多个 GPU 上测试模型:
./tools/dist_test.sh configs/alrp_loss/alrp_loss_retinanet_r50_fpn_ATSS_100e_coco500.py -PATH-TO-TRAINED-MODEL 4 --eval bbox
或者在单个 GPU 上测试:
python tools/test.py configs/alrp_loss/alrp_loss_retinanet_r50_fpn_ATSS_100e_coco500.py -PATH-TO-TRAINED-MODEL 4 --eval bbox
3. 应用案例和最佳实践
3.1 应用案例
aLRPLoss 主要应用于目标检测任务,特别是在需要高精度定位和高置信度分类的场景中。例如,自动驾驶中的物体检测、医学图像中的病变检测等。
3.2 最佳实践
- 数据增强:在训练过程中使用数据增强技术(如随机裁剪、翻转等)可以提高模型的泛化能力。
- 学习率调度:根据训练进度调整学习率,通常在第 60 和 80 个 epoch 时降低学习率。
- 模型集成:使用多个不同配置的模型进行集成,可以进一步提高检测精度。
4. 典型生态项目
- MMDetection:aLRPLoss 基于 MMDetection 框架,MMDetection 是一个开源的目标检测工具箱,支持多种检测模型和损失函数。
- PyTorch:aLRPLoss 使用 PyTorch 作为深度学习框架,PyTorch 提供了强大的 GPU 加速和张量操作功能。
- COCO API:用于处理 COCO 数据集的 API,提供了数据加载、评估等功能。
通过以上步骤,你可以快速上手 aLRPLoss 项目,并在目标检测任务中应用该损失函数。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
200
219
仓颉编译器源码及 cjdb 调试工具。
C++
129
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100