JobFunnel项目从setup.py迁移到pyproject.toml的技术实践
在Python项目开发中,构建系统的现代化演进是一个重要趋势。JobFunnel项目最近完成了从传统的setup.py向pyproject.toml配置方式的迁移,这一转变代表了Python打包工具链的重大进步。
传统setup.py方式存在几个固有缺陷:首先,它是一个Python脚本,执行时可能产生副作用;其次,它缺乏标准化的依赖声明方式;最重要的是,它不符合PEP 517和PEP 518提出的构建系统隔离原则。而pyproject.toml作为新的标准配置文件,采用TOML格式,具有更好的可读性和可维护性。
迁移过程中,我们重点关注了几个关键方面:
-
构建系统声明:在pyproject.toml中明确指定了构建后端工具,确保构建环境的隔离性和可重复性。这避免了传统setup.py方式下可能出现的隐式依赖问题。
-
项目元数据转移:将原setup.py中的所有项目信息,包括名称、版本、作者、描述等,按照PEP 621标准迁移到pyproject.toml中。这种声明式配置比原来的命令式Python代码更加清晰可靠。
-
依赖管理改进:在新的配置文件中,我们明确了构建依赖和运行时依赖的区分,使得依赖关系更加透明。这有助于避免开发环境和生产环境的不一致问题。
-
开发体验优化:配合这次迁移,我们还引入了isort和flake8等代码质量工具,统一代码风格,提高项目可维护性。这些工具的配置也可以集成在pyproject.toml中,实现一站式配置管理。
这次技术升级带来的好处是多方面的:首先,它使JobFunnel项目与Python生态系统的最新标准保持一致;其次,它简化了贡献者的入门门槛,因为TOML格式比Python脚本更易理解和修改;最后,它为未来可能的进一步现代化(如使用Poetry等工具)奠定了基础。
对于其他考虑进行类似迁移的项目,我们建议采取渐进式策略:可以先同时保留setup.py和pyproject.toml,逐步将配置转移到新文件,最后再移除旧文件。同时,要特别注意CI/CD管道的适配和构建后端的兼容性问题。
这次JobFunnel的配置迁移不仅是一次技术升级,更是项目维护理念的转变——从传统的命令式配置转向现代的声明式配置,这代表了Python打包领域的最佳实践发展方向。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00