探索未来安全:深度学习驱动的智能手表监控(Deep-Spying)
在这个数字化时代,智能穿戴设备已经渗透到我们的日常生活。然而,随之而来的可能是新的隐私威胁。Deep-Spying 是一个开源项目,它揭示了智能手表和深度学习结合可能带来的安全性挑战,同时也为我们提供了一种理解和预防这种风险的方法。
项目介绍
这个项目源于一份在丹麦哥本哈根信息技术大学完成的硕士论文,其目标是通过实验展示如何利用智能手表中的运动传感器进行触摸记录和按键追踪。通过一个基于长短期记忆网络(LSTM)的神经网络实现,该系统能在12键数字键盘上以高准确度预测输入的字符,即使面对未经处理的原始数据,也能取得显著的效果。项目作者Tony Beltramelli和Sebastian Risi教授的研究引起了国际媒体的广泛关注,包括 Wired UK, Vice, Gizmodo 等。
项目技术分析
Deep-Spying 使用了一种先进的机器学习模型——LSTM,这是一种能够处理序列数据的强大工具,特别适合捕捉时间序列数据中的模式。这个模型可以直接从智能手表收集的原始加速度和陀螺仪数据中学习,无需复杂的预处理步骤或特征工程。这使得攻击者可以更简单地实施基于运动传感器的侧信道攻击。
应用场景
该项目的应用场景直指信息安全领域,特别是针对智能可穿戴设备用户。想象一下,当用户在输入密码、PIN码或者敏感信息时,如果他们的智能手表被恶意软件感染,那么这些信息可能面临被窃取的风险。此外,这项研究也为物联网设备的安全性提供了警示,并提醒我们关注设备间的相互影响。
项目特点
- 精准预测:LSTM模型能够对12键键盘的输入进行准确预测,提高了攻击的可能性。
- 简洁设计:不需要复杂的数据预处理或特征提取,简化了攻击者的操作。
- 现实世界应用:项目成果已在实际环境下的智能手表上进行了验证,结果令人担忧。
- 教育价值:项目公开代码和相关资料,有助于提升公众对智能穿戴设备潜在安全问题的认识。
项目提供了详细的演示视频和学术论文,供有兴趣的读者深入了解。如果你对信息安全或深度学习在可穿戴技术中的应用感兴趣,或者想了解如何保护自己免受此类攻击,Deep-Spying 无疑是不容忽视的研究资源。
为了确保负责的科技使用,我们鼓励开发者和研究人员参与这样的开放讨论,以促进更安全的技术生态系统的构建。引用本文研究时,请遵循提供的引用指南:
@article{beltramelli2015deep,
title={Deep-Spying: Spying using Smartwatch and Deep Learning},
author={Beltramelli, Tony and Risi, Sebastian},
journal={arXiv preprint arXiv:1512.05616},
year={2015}
}
让我们共同探讨并解决这个未来安全的新挑战。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









