LiDAR Iris 项目使用教程
2024-09-28 01:47:38作者:范垣楠Rhoda
1. 项目的目录结构及介绍
LiDAR-Iris/
├── CMakeLists.txt
├── LICENSE
├── README.md
├── demo.cpp
├── draw.py
├── img/
│ ├── 00.txt
│ ├── 05.txt
│ └── 08.txt
├── gt/
│ ├── 00.txt
│ ├── 05.txt
│ └── 08.txt
└── test_res/
├── 00.txt
├── 05.txt
└── 08.txt
- CMakeLists.txt: 项目的CMake构建文件,用于配置和编译项目。
- LICENSE: 项目的开源许可证文件,本项目使用MIT许可证。
- README.md: 项目的介绍文档,包含项目的概述、使用方法和相关引用。
- demo.cpp: 项目的启动文件,包含主要的代码逻辑。
- draw.py: 用于绘制和可视化结果的Python脚本。
- img/: 包含示例图像数据的文件夹。
- gt/: 包含地面真值数据的文件夹。
- test_res/: 包含测试结果数据的文件夹。
2. 项目的启动文件介绍
demo.cpp
demo.cpp 是 LiDAR Iris 项目的主要启动文件,负责执行 LiDAR Iris 的循环闭合检测功能。该文件包含了以下主要功能:
- 数据加载: 加载 LiDAR 点云数据。
- 特征提取: 使用 LiDAR Iris 方法提取点云的全局描述符。
- 循环闭合检测: 计算两个点云之间的相似度,判断是否存在循环闭合。
使用方法
-
编译项目:
mkdir build cd build cmake .. make -
运行
demo.cpp:./demo
3. 项目的配置文件介绍
CMakeLists.txt
CMakeLists.txt 是项目的构建配置文件,用于配置项目的编译选项和依赖库。以下是主要配置项:
- 项目名称: 设置项目名称为
LiDAR-Iris。 - 编译选项: 设置 C++ 标准为 C++11。
- 依赖库: 添加 PCL (Point Cloud Library) 和 OpenCV 库的依赖。
示例内容
cmake_minimum_required(VERSION 3.10)
project(LiDAR-Iris)
set(CMAKE_CXX_STANDARD 11)
find_package(PCL 1.8 REQUIRED)
find_package(OpenCV REQUIRED)
include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})
add_executable(demo demo.cpp)
target_link_libraries(demo ${PCL_LIBRARIES} ${OpenCV_LIBS})
通过以上配置,项目可以正确地编译和链接所需的依赖库,确保 demo.cpp 能够正常运行。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
409
仓颉编程语言运行时与标准库。
Cangjie
130
422