机器人学与感知导论 —— 基于GTBook的开源学习之旅
1. 项目介绍
《机器人学与感知导论》 是由Frank Dellaert和Seth Hutchinson编写的笔记本式电子书。该项目托管在GitHub上(gtbook/robotics),采用BSD-3-Clause许可证发布。它涵盖了从基础到进阶的机器人学与感知主题,通过Jupyter Notebook的形式,提供了丰富的教学资源,包括数学模型、推理、决策理论等,并且覆盖了各种机器人平台的应用,如排序机、吸尘器机器人、物流系统、差动驱动机器人、自动驾驶汽车以及无人机。
2. 项目快速启动
要快速启动并运行此项目,首先确保你的计算机已安装Git、Python及其相关科学计算库。以下是简化的步骤:
安装必要的软件包
确保安装了git和一个适合运行Jupyter Notebook的Python环境(推荐Anaconda)。
sudo apt-get install git # 对于Linux用户
brew install git # 对于MacOS用户
conda create --name robotics python=3.8 # 创建一个新的Conda环境
conda activate robotics # 激活该环境
pip install jupyter notebook
克隆项目仓库
接下来,使用以下命令克隆项目到本地:
git clone https://github.com/gtbook/robotics.git
cd robotics
运行Jupyter Notebook
最后,在项目根目录下启动Jupyter Notebook服务器:
jupyter notebook
浏览器将自动打开,你可以从中选择任意.ipynb文件开始学习。
3. 应用案例和最佳实践
本项目本身就是一系列最佳实践的集合。例如,通过研究S30_vacuum_intro.ipynb这个关于真空吸尘机器人的介绍性笔记,可以了解到如何构建简单的机器人行为模型。每份笔记都包含了概念讲解、数学公式、代码示例和可视化,引导读者通过实际编程理解机器人学的核心原理。
4. 典型生态项目
虽然该项目本身是围绕教材构建的,但其生态涵盖了许多机器学习与机器人技术的实际应用。开发者和研究人员可以借鉴这里的方法来开发自己的机器人应用或工具。例如,对于想深入研究无人机控制或自动驾驶算法的研究员来说,项目中的章节如S70_drone_intro.ipynb和S60_driving_intro.ipynb提供了宝贵的起点。此外,社区内的其他开发者可能基于此项目创建了更多的插件或扩展,进一步丰富了机器人学领域的开源生态。
这个开源项目不仅为初学者提供了学习机器人学和感知的基础框架,也为高级用户提供了深入探索特定领域的机会。通过实际操作这些Jupyter Notebook,学习者能够理论结合实践,深化理解和技能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00