机器人学与感知导论 —— 基于GTBook的开源学习之旅
1. 项目介绍
《机器人学与感知导论》 是由Frank Dellaert和Seth Hutchinson编写的笔记本式电子书。该项目托管在GitHub上(gtbook/robotics),采用BSD-3-Clause许可证发布。它涵盖了从基础到进阶的机器人学与感知主题,通过Jupyter Notebook的形式,提供了丰富的教学资源,包括数学模型、推理、决策理论等,并且覆盖了各种机器人平台的应用,如排序机、吸尘器机器人、物流系统、差动驱动机器人、自动驾驶汽车以及无人机。
2. 项目快速启动
要快速启动并运行此项目,首先确保你的计算机已安装Git、Python及其相关科学计算库。以下是简化的步骤:
安装必要的软件包
确保安装了git
和一个适合运行Jupyter Notebook的Python环境(推荐Anaconda)。
sudo apt-get install git # 对于Linux用户
brew install git # 对于MacOS用户
conda create --name robotics python=3.8 # 创建一个新的Conda环境
conda activate robotics # 激活该环境
pip install jupyter notebook
克隆项目仓库
接下来,使用以下命令克隆项目到本地:
git clone https://github.com/gtbook/robotics.git
cd robotics
运行Jupyter Notebook
最后,在项目根目录下启动Jupyter Notebook服务器:
jupyter notebook
浏览器将自动打开,你可以从中选择任意.ipynb
文件开始学习。
3. 应用案例和最佳实践
本项目本身就是一系列最佳实践的集合。例如,通过研究S30_vacuum_intro.ipynb
这个关于真空吸尘机器人的介绍性笔记,可以了解到如何构建简单的机器人行为模型。每份笔记都包含了概念讲解、数学公式、代码示例和可视化,引导读者通过实际编程理解机器人学的核心原理。
4. 典型生态项目
虽然该项目本身是围绕教材构建的,但其生态涵盖了许多机器学习与机器人技术的实际应用。开发者和研究人员可以借鉴这里的方法来开发自己的机器人应用或工具。例如,对于想深入研究无人机控制或自动驾驶算法的研究员来说,项目中的章节如S70_drone_intro.ipynb
和S60_driving_intro.ipynb
提供了宝贵的起点。此外,社区内的其他开发者可能基于此项目创建了更多的插件或扩展,进一步丰富了机器人学领域的开源生态。
这个开源项目不仅为初学者提供了学习机器人学和感知的基础框架,也为高级用户提供了深入探索特定领域的机会。通过实际操作这些Jupyter Notebook,学习者能够理论结合实践,深化理解和技能。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04