KittiBox 开源项目使用教程
1. 项目介绍
KittiBox 是一个基于 TensorFlow 实现的汽车检测模型,旨在训练 FastBox 模型在 Kitti 对象检测数据集上。FastBox 模型设计用于在非常快的推理速度下实现高检测性能。在 Kitti 数据集上,FastBox 模型的吞吐量为 28 fps(36ms),速度是 FasterRCNN 的两倍以上,同时性能显著优于 FasterRCNN。
KittiBox 项目包含用于训练、评估和可视化 FastBox 模型的脚本,并且与 TensorVision 后端兼容,使得实验组织非常清晰。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- TensorFlow 1.0 或更高版本
- Python 库:matplotlib, numpy, Pillow, scipy, runcython
你可以使用以下命令安装这些依赖:
pip install numpy scipy pillow matplotlib runcython
2.2 克隆项目
克隆 KittiBox 项目到本地:
git clone https://github.com/MarvinTeichmann/KittiBox.git
cd KittiBox
2.3 初始化子模块
初始化并更新所有子模块:
git submodule update --init --recursive
2.4 运行演示
运行以下命令以使用 demo.png
作为输入进行预测:
python demo.py --input_image data/demo.png
2.5 训练模型
如果你想训练一个新的模型,可以使用以下命令:
python train.py
3. 应用案例和最佳实践
3.1 自定义数据集训练
KittiBox 允许你使用自定义数据集进行训练。你可以通过修改 hypes/kittiBox.json
文件来调整模型架构和训练参数。例如,创建一个新的 hypes/my_hype.json
文件并使用以下命令进行训练:
python train.py --hypes hypes/my_hype.json
3.2 模型评估
使用以下命令计算训练和验证分数:
python evaluate.py
3.3 使用 TensorVision 后端
KittiBox 构建在 TensorVision 后端之上,TensorVision 模块化了计算机视觉训练并帮助组织实验。你可以通过以下命令安装 TensorVision:
cd KittiBox/submodules/TensorVision
python setup.py install
安装后,你可以使用 TensorVision 的命令行工具,例如:
tv-train --hypes hypes/KittiBox.json
4. 典型生态项目
4.1 KittiSeg
KittiSeg 是另一个与 KittiBox 相关的项目,它实现了一个最先进的道路分割模型。你可以通过以下链接访问 KittiSeg 项目:
4.2 MultiNet
MultiNet 是一个联合推理的项目,包含了 KittiBox 和 KittiSeg 的代码。你可以通过以下链接访问 MultiNet 项目:
通过这些生态项目,你可以构建更复杂的计算机视觉系统,结合物体检测和道路分割等功能。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









