首页
/ KittiBox 开源项目使用教程

KittiBox 开源项目使用教程

2024-09-18 13:26:03作者:昌雅子Ethen

1. 项目介绍

KittiBox 是一个基于 TensorFlow 实现的汽车检测模型,旨在训练 FastBox 模型在 Kitti 对象检测数据集上。FastBox 模型设计用于在非常快的推理速度下实现高检测性能。在 Kitti 数据集上,FastBox 模型的吞吐量为 28 fps(36ms),速度是 FasterRCNN 的两倍以上,同时性能显著优于 FasterRCNN。

KittiBox 项目包含用于训练、评估和可视化 FastBox 模型的脚本,并且与 TensorVision 后端兼容,使得实验组织非常清晰。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了以下依赖:

  • TensorFlow 1.0 或更高版本
  • Python 库:matplotlib, numpy, Pillow, scipy, runcython

你可以使用以下命令安装这些依赖:

pip install numpy scipy pillow matplotlib runcython

2.2 克隆项目

克隆 KittiBox 项目到本地:

git clone https://github.com/MarvinTeichmann/KittiBox.git
cd KittiBox

2.3 初始化子模块

初始化并更新所有子模块:

git submodule update --init --recursive

2.4 运行演示

运行以下命令以使用 demo.png 作为输入进行预测:

python demo.py --input_image data/demo.png

2.5 训练模型

如果你想训练一个新的模型,可以使用以下命令:

python train.py

3. 应用案例和最佳实践

3.1 自定义数据集训练

KittiBox 允许你使用自定义数据集进行训练。你可以通过修改 hypes/kittiBox.json 文件来调整模型架构和训练参数。例如,创建一个新的 hypes/my_hype.json 文件并使用以下命令进行训练:

python train.py --hypes hypes/my_hype.json

3.2 模型评估

使用以下命令计算训练和验证分数:

python evaluate.py

3.3 使用 TensorVision 后端

KittiBox 构建在 TensorVision 后端之上,TensorVision 模块化了计算机视觉训练并帮助组织实验。你可以通过以下命令安装 TensorVision:

cd KittiBox/submodules/TensorVision
python setup.py install

安装后,你可以使用 TensorVision 的命令行工具,例如:

tv-train --hypes hypes/KittiBox.json

4. 典型生态项目

4.1 KittiSeg

KittiSeg 是另一个与 KittiBox 相关的项目,它实现了一个最先进的道路分割模型。你可以通过以下链接访问 KittiSeg 项目:

KittiSeg GitHub 仓库

4.2 MultiNet

MultiNet 是一个联合推理的项目,包含了 KittiBox 和 KittiSeg 的代码。你可以通过以下链接访问 MultiNet 项目:

MultiNet GitHub 仓库

通过这些生态项目,你可以构建更复杂的计算机视觉系统,结合物体检测和道路分割等功能。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5