KittiBox 开源项目使用教程
1. 项目介绍
KittiBox 是一个基于 TensorFlow 实现的汽车检测模型,旨在训练 FastBox 模型在 Kitti 对象检测数据集上。FastBox 模型设计用于在非常快的推理速度下实现高检测性能。在 Kitti 数据集上,FastBox 模型的吞吐量为 28 fps(36ms),速度是 FasterRCNN 的两倍以上,同时性能显著优于 FasterRCNN。
KittiBox 项目包含用于训练、评估和可视化 FastBox 模型的脚本,并且与 TensorVision 后端兼容,使得实验组织非常清晰。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- TensorFlow 1.0 或更高版本
- Python 库:matplotlib, numpy, Pillow, scipy, runcython
你可以使用以下命令安装这些依赖:
pip install numpy scipy pillow matplotlib runcython
2.2 克隆项目
克隆 KittiBox 项目到本地:
git clone https://github.com/MarvinTeichmann/KittiBox.git
cd KittiBox
2.3 初始化子模块
初始化并更新所有子模块:
git submodule update --init --recursive
2.4 运行演示
运行以下命令以使用 demo.png
作为输入进行预测:
python demo.py --input_image data/demo.png
2.5 训练模型
如果你想训练一个新的模型,可以使用以下命令:
python train.py
3. 应用案例和最佳实践
3.1 自定义数据集训练
KittiBox 允许你使用自定义数据集进行训练。你可以通过修改 hypes/kittiBox.json
文件来调整模型架构和训练参数。例如,创建一个新的 hypes/my_hype.json
文件并使用以下命令进行训练:
python train.py --hypes hypes/my_hype.json
3.2 模型评估
使用以下命令计算训练和验证分数:
python evaluate.py
3.3 使用 TensorVision 后端
KittiBox 构建在 TensorVision 后端之上,TensorVision 模块化了计算机视觉训练并帮助组织实验。你可以通过以下命令安装 TensorVision:
cd KittiBox/submodules/TensorVision
python setup.py install
安装后,你可以使用 TensorVision 的命令行工具,例如:
tv-train --hypes hypes/KittiBox.json
4. 典型生态项目
4.1 KittiSeg
KittiSeg 是另一个与 KittiBox 相关的项目,它实现了一个最先进的道路分割模型。你可以通过以下链接访问 KittiSeg 项目:
4.2 MultiNet
MultiNet 是一个联合推理的项目,包含了 KittiBox 和 KittiSeg 的代码。你可以通过以下链接访问 MultiNet 项目:
通过这些生态项目,你可以构建更复杂的计算机视觉系统,结合物体检测和道路分割等功能。
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109