KittiBox 开源项目使用教程
1. 项目介绍
KittiBox 是一个基于 TensorFlow 实现的汽车检测模型,旨在训练 FastBox 模型在 Kitti 对象检测数据集上。FastBox 模型设计用于在非常快的推理速度下实现高检测性能。在 Kitti 数据集上,FastBox 模型的吞吐量为 28 fps(36ms),速度是 FasterRCNN 的两倍以上,同时性能显著优于 FasterRCNN。
KittiBox 项目包含用于训练、评估和可视化 FastBox 模型的脚本,并且与 TensorVision 后端兼容,使得实验组织非常清晰。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- TensorFlow 1.0 或更高版本
- Python 库:matplotlib, numpy, Pillow, scipy, runcython
你可以使用以下命令安装这些依赖:
pip install numpy scipy pillow matplotlib runcython
2.2 克隆项目
克隆 KittiBox 项目到本地:
git clone https://github.com/MarvinTeichmann/KittiBox.git
cd KittiBox
2.3 初始化子模块
初始化并更新所有子模块:
git submodule update --init --recursive
2.4 运行演示
运行以下命令以使用 demo.png 作为输入进行预测:
python demo.py --input_image data/demo.png
2.5 训练模型
如果你想训练一个新的模型,可以使用以下命令:
python train.py
3. 应用案例和最佳实践
3.1 自定义数据集训练
KittiBox 允许你使用自定义数据集进行训练。你可以通过修改 hypes/kittiBox.json 文件来调整模型架构和训练参数。例如,创建一个新的 hypes/my_hype.json 文件并使用以下命令进行训练:
python train.py --hypes hypes/my_hype.json
3.2 模型评估
使用以下命令计算训练和验证分数:
python evaluate.py
3.3 使用 TensorVision 后端
KittiBox 构建在 TensorVision 后端之上,TensorVision 模块化了计算机视觉训练并帮助组织实验。你可以通过以下命令安装 TensorVision:
cd KittiBox/submodules/TensorVision
python setup.py install
安装后,你可以使用 TensorVision 的命令行工具,例如:
tv-train --hypes hypes/KittiBox.json
4. 典型生态项目
4.1 KittiSeg
KittiSeg 是另一个与 KittiBox 相关的项目,它实现了一个最先进的道路分割模型。你可以通过以下链接访问 KittiSeg 项目:
4.2 MultiNet
MultiNet 是一个联合推理的项目,包含了 KittiBox 和 KittiSeg 的代码。你可以通过以下链接访问 MultiNet 项目:
通过这些生态项目,你可以构建更复杂的计算机视觉系统,结合物体检测和道路分割等功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00