MultiNet 开源项目使用教程
2024-09-15 17:17:38作者:范靓好Udolf
1. 项目目录结构及介绍
MultiNet 项目的目录结构如下:
MultiNet/
├── data/
│ └── demo/
├── docu/
├── hypes/
├── incl/
├── licenses/
├── submodules/
│ ├── KittiBox/
│ ├── KittiClass/
│ └── KittiSeg/
├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── demo.py
├── download_data.py
├── predict_joint.py
├── requirements.txt
└── train.py
目录结构介绍
- data/: 存放示例数据和下载的数据。
- demo/: 存放演示用的图片。
- docu/: 存放项目文档。
- hypes/: 存放配置文件。
- incl/: 包含一些额外的文件。
- licenses/: 存放许可证文件。
- submodules/: 包含项目的子模块,如 KittiBox、KittiClass 和 KittiSeg。
- .gitignore: Git 忽略文件。
- .gitmodules: Git 子模块配置文件。
- LICENSE: 项目许可证。
- README.md: 项目介绍文件。
- demo.py: 演示脚本,用于运行模型并生成预测结果。
- download_data.py: 数据下载脚本。
- predict_joint.py: 联合预测脚本。
- requirements.txt: 项目依赖库列表。
- train.py: 训练脚本。
2. 项目启动文件介绍
demo.py
demo.py
是 MultiNet 项目的主要启动文件之一,用于演示模型的预测功能。通过该脚本,用户可以输入一张图片,模型会输出相应的预测结果。
使用方法
python demo.py --gpus 0 --input data/demo/um_000005.png
--gpus
: 指定使用的 GPU 编号。--input
: 指定输入图片的路径。
train.py
train.py
是用于训练模型的启动文件。用户可以通过该脚本训练自己的模型。
使用方法
python train.py --hypes hypes/multinet2.json
--hypes
: 指定使用的配置文件路径。
3. 项目的配置文件介绍
hypes/multinet3.json
hypes/multinet3.json
是 MultiNet 项目的主要配置文件之一,用于控制模型的训练和预测行为。该文件包含了模型的超参数、数据路径、子模型的配置等信息。
配置文件结构
{
"models": {
"segmentation": "submodules/KittiSeg/hypes/KittiSeg.json",
"detection": "submodules/KittiBox/hypes/kittiBox.json",
"road": "submodules/KittiClass/hypes/KittiClass.json"
}
}
- models: 定义了各个子模型的配置文件路径。
- segmentation: 分割模型的配置文件路径。
- detection: 检测模型的配置文件路径。
- road: 道路分类模型的配置文件路径。
通过修改这些配置文件,用户可以自定义模型的训练和预测行为。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie034
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- Sscreenshot-to-code上传一张屏幕截图并将其转换为整洁的代码(HTML/Tailwind/React/Vue)Python03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript088
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX023
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
34
25
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
837
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
34
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.93 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.63 K
1.45 K
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
58
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
149
26
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
20
2
go-iot-platform
Go IoT 平台,这是一个高效、可扩展的物联网解决方案,使用 Go 语言开发。本平台专注于提供稳定、可靠的 MQTT 客户端管理,以及对 MQTT上报数据的全面处理和分析。
Go
9
4