PyTorch/TensorRT 中保存大模型时 pickle_protocol 问题的解决方案
在深度学习模型部署过程中,我们经常需要将优化后的模型保存到磁盘。然而,当处理大型模型时,比如 CLIP 这样的视觉语言模型,可能会遇到模型序列化的问题。本文将详细介绍在 PyTorch/TensorRT 项目中保存大型模型时遇到的 pickle 协议限制问题及其解决方案。
问题背景
当使用 torch_tensorrt.save 方法保存优化后的大型模型时,如果模型大小超过 4GB,会遇到序列化错误。这是因为 Python 的 pickle 模块在默认协议版本(protocol 2)下无法处理超过 4GB 的数据块。错误信息通常会显示:"serializing a string larger than 4 GiB requires pickle protocol 4 or higher"。
技术分析
PyTorch 的序列化机制底层依赖于 pickle 模块。在 torch.save 方法中,已经提供了 pickle_protocol 参数来支持更高版本的协议。然而,torch_tensorrt.save 方法内部使用的是 torch.export.save,这个接口最初并没有暴露 pickle_protocol 参数。
具体的技术栈调用关系如下:
- torch_tensorrt.save 调用 torch.export.save
- torch.export.save 调用 serialize_torch_artifact
- serialize_torch_artifact 内部使用 torch.save
解决方案
经过社区与 PyTorch 核心团队的协作,这个问题已经在最新版本中得到解决。现在用户可以直接在 torch_tensorrt.save 方法中指定 pickle_protocol 参数:
torch_tensorrt.save(model, "large_model.ep", inputs=[input_tensor], pickle_protocol=4)
对于使用较旧版本的用户,可以暂时使用以下变通方案:
exported = torch_tensorrt.dynamo._exporter.export(compiled_model)
torch.export.save(exported, save_path, pickle_protocol=4)
最佳实践
- 对于大型模型,总是使用 pickle_protocol=4 或更高版本
- 确保使用的 PyTorch 和 TensorRT 版本是最新的
- 在保存模型前,先进行小批量数据的前向传播以确保模型正确性
- 考虑模型量化等优化技术来减小模型体积
总结
随着深度学习模型规模的不断增大,序列化大模型已成为部署流程中的常见需求。PyTorch/TensorRT 生态通过不断完善其序列化机制,为开发者提供了更强大的工具支持。了解并正确使用 pickle_protocol 参数,可以避免在模型保存阶段遇到不必要的障碍,使大型模型的部署更加顺畅。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









