PyTorch/TensorRT 中保存大模型时 pickle_protocol 问题的解决方案
在深度学习模型部署过程中,我们经常需要将优化后的模型保存到磁盘。然而,当处理大型模型时,比如 CLIP 这样的视觉语言模型,可能会遇到模型序列化的问题。本文将详细介绍在 PyTorch/TensorRT 项目中保存大型模型时遇到的 pickle 协议限制问题及其解决方案。
问题背景
当使用 torch_tensorrt.save 方法保存优化后的大型模型时,如果模型大小超过 4GB,会遇到序列化错误。这是因为 Python 的 pickle 模块在默认协议版本(protocol 2)下无法处理超过 4GB 的数据块。错误信息通常会显示:"serializing a string larger than 4 GiB requires pickle protocol 4 or higher"。
技术分析
PyTorch 的序列化机制底层依赖于 pickle 模块。在 torch.save 方法中,已经提供了 pickle_protocol 参数来支持更高版本的协议。然而,torch_tensorrt.save 方法内部使用的是 torch.export.save,这个接口最初并没有暴露 pickle_protocol 参数。
具体的技术栈调用关系如下:
- torch_tensorrt.save 调用 torch.export.save
- torch.export.save 调用 serialize_torch_artifact
- serialize_torch_artifact 内部使用 torch.save
解决方案
经过社区与 PyTorch 核心团队的协作,这个问题已经在最新版本中得到解决。现在用户可以直接在 torch_tensorrt.save 方法中指定 pickle_protocol 参数:
torch_tensorrt.save(model, "large_model.ep", inputs=[input_tensor], pickle_protocol=4)
对于使用较旧版本的用户,可以暂时使用以下变通方案:
exported = torch_tensorrt.dynamo._exporter.export(compiled_model)
torch.export.save(exported, save_path, pickle_protocol=4)
最佳实践
- 对于大型模型,总是使用 pickle_protocol=4 或更高版本
- 确保使用的 PyTorch 和 TensorRT 版本是最新的
- 在保存模型前,先进行小批量数据的前向传播以确保模型正确性
- 考虑模型量化等优化技术来减小模型体积
总结
随着深度学习模型规模的不断增大,序列化大模型已成为部署流程中的常见需求。PyTorch/TensorRT 生态通过不断完善其序列化机制,为开发者提供了更强大的工具支持。了解并正确使用 pickle_protocol 参数,可以避免在模型保存阶段遇到不必要的障碍,使大型模型的部署更加顺畅。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00