PyTorch/TensorRT 中保存大模型时 pickle_protocol 问题的解决方案
在深度学习模型部署过程中,我们经常需要将优化后的模型保存到磁盘。然而,当处理大型模型时,比如 CLIP 这样的视觉语言模型,可能会遇到模型序列化的问题。本文将详细介绍在 PyTorch/TensorRT 项目中保存大型模型时遇到的 pickle 协议限制问题及其解决方案。
问题背景
当使用 torch_tensorrt.save 方法保存优化后的大型模型时,如果模型大小超过 4GB,会遇到序列化错误。这是因为 Python 的 pickle 模块在默认协议版本(protocol 2)下无法处理超过 4GB 的数据块。错误信息通常会显示:"serializing a string larger than 4 GiB requires pickle protocol 4 or higher"。
技术分析
PyTorch 的序列化机制底层依赖于 pickle 模块。在 torch.save 方法中,已经提供了 pickle_protocol 参数来支持更高版本的协议。然而,torch_tensorrt.save 方法内部使用的是 torch.export.save,这个接口最初并没有暴露 pickle_protocol 参数。
具体的技术栈调用关系如下:
- torch_tensorrt.save 调用 torch.export.save
- torch.export.save 调用 serialize_torch_artifact
- serialize_torch_artifact 内部使用 torch.save
解决方案
经过社区与 PyTorch 核心团队的协作,这个问题已经在最新版本中得到解决。现在用户可以直接在 torch_tensorrt.save 方法中指定 pickle_protocol 参数:
torch_tensorrt.save(model, "large_model.ep", inputs=[input_tensor], pickle_protocol=4)
对于使用较旧版本的用户,可以暂时使用以下变通方案:
exported = torch_tensorrt.dynamo._exporter.export(compiled_model)
torch.export.save(exported, save_path, pickle_protocol=4)
最佳实践
- 对于大型模型,总是使用 pickle_protocol=4 或更高版本
- 确保使用的 PyTorch 和 TensorRT 版本是最新的
- 在保存模型前,先进行小批量数据的前向传播以确保模型正确性
- 考虑模型量化等优化技术来减小模型体积
总结
随着深度学习模型规模的不断增大,序列化大模型已成为部署流程中的常见需求。PyTorch/TensorRT 生态通过不断完善其序列化机制,为开发者提供了更强大的工具支持。了解并正确使用 pickle_protocol 参数,可以避免在模型保存阶段遇到不必要的障碍,使大型模型的部署更加顺畅。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









