探索高效大型语言模型:一次全面的调查
2024-05-24 20:52:27作者:魏侃纯Zoe
随着人工智能领域的飞速发展,大型语言模型(LLMs)正逐渐成为技术前沿的关键角色。然而,它们的巨大潜力伴随着同样巨大的资源需求,这使得效率问题成为了研究的重点。《高效大型语言模型:一次全面的调查》这篇综述性论文,深入探讨了如何通过模型、数据和框架三个维度优化LLMs的效率。以下是对该项目的详细介绍。
项目介绍
该开源项目旨在提供一个系统性的、详尽的LLMs效率研究的文献回顾,通过模型中心、数据中心和框架中心三个方面构建了一个清晰的分类体系。不仅如此,项目还包括一系列最新的研究工作案例,以展示在实际操作中提升LLMs性能的方法。
项目技术分析
-
模型中心方法:包括模型压缩(如量化和剪枝)、高效的预训练和微调策略以及更高效的推理方法。
-
数据中心方法:主要涉及数据选择和提示工程,以提高模型训练和应用的效率。
-
框架中心方法:关注系统层面的效率优化,涵盖从预训练到部署的各个环节,并涉及特定架构的改进。
项目及技术应用场景
这些技术和策略适用于各种场景,例如:
- 在有限计算资源下进行大规模的语言理解与生成任务。
- 提高云服务提供商的服务质量和降低成本,让更多的客户能负担得起高级AI服务。
- 对于移动设备或IoT设备,优化后的LLMs可以在本地执行复杂的自然语言处理任务,而无需依赖云端。
项目特点
- 系统性梳理:项目通过细致的分类对大量研究进行了梳理,帮助读者快速理解和掌握效率优化的各种途径。
- 实时更新:项目团队将持续跟踪最新研究成果,保持资料库的时效性。
- 实例丰富:每个技术点都辅以具体的研究案例,便于实践者参考和应用。
- 跨学科覆盖:不仅涵盖了计算机科学的技术,还涉及到数据科学、机器学习等多个领域。
对于热衷于LLMs研究的学者、工程师和开发者来说,这个项目提供了一站式的资源平台,有助于他们在这个重要且激动人心的领域中取得新的突破。无论你是初次接触还是资深从业者,都能从中获益匪浅,一起探索如何让LLMs在资源有限的情况下发挥出最大效能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137