探索不确定性:大型语言模型的全新评估标准
在自然语言处理领域,大型语言模型(LLMs)的开放源代码发布已经成为了趋势。然而,当前的评价体系往往忽视了一个关键因素——不确定性。为了填补这一空白,我们引入了一种新的评估方法,名为“Benchmarking LLMs via Uncertainty Quantification”,它不仅仅关注预测的准确性,更强调预测的不确定性。这个创新的框架旨在提供一个更为全面和深入的视角来理解这些强大的AI工具。
1. 项目简介
该项目首次将不确定性纳入LLMs的评估标准,涵盖五类典型任务:问题回答(QA)、阅读理解(RC)、常识推理(CI)、对话响应选择(DRS)和文档摘要(DS)。通过一种名为conformal prediction的方法,我们可以量化不同LLMs在执行任务时的不确定程度,从而揭示其内在的性能差异。
2. 技术分析:不确定性量化
我们利用了conformal prediction的技术来进行不确定性量化。这种方法以统计学上的严格性著称,能有效、高效地为LLMs的预测结果估计不确定度。这不同于其他可能的不确定性估算策略,它的实施简单且准确,使我们得以评估LLMs在多种任务中的表现和它们对不确定性的把握。
3. 应用场景与数据集
为了实现全面评估,项目包括了五个NLP任务的10,000个实例数据集,分别来源于MMLU(用于QA)、CosmosQA(用于RC)、HellaSwag(用于CI)、HaluEval(用于DRS和DS)。每个任务都设计成多选题形式,要求从多个选项中选出唯一正确答案,从而更好地衡量LLMs的决策能力和信心水平。
4. 项目特点
- 综合性评价:项目提出的不确定性评估指标(UAcc),结合了精度和不确定性两个维度,提供了更立体的比较方式。
- 广泛覆盖:涉及八种不同的LLMs,包括Yi系列、Qwen系列、Llama-2系列等,以及各种规模的模型和经过指令微调的聊天模型。
- 深度洞察:研究发现,高准确率的模型可能会有较低的确定性,而大规模模型的不确定性可能更高,这说明了不确定性在评估中的重要性。
通过这个项目,我们可以看到,即使是同一精度下,不同LLMs的性能和可靠性也可能存在显著差异,这对于研究人员和开发者来说是一种全新的启示,意味着他们在选择和应用LLMs时可以有更加全面的考量。
那么,是时候升级你的评估标准了!加入我们,一起探索和理解LLMs的未知世界,让我们共同推动自然语言处理领域的进步。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









