Seurat V5多样本整合的正确流程解析
2025-07-01 21:34:02作者:齐冠琰
在单细胞RNA测序数据分析中,整合多个样本是一个常见且关键的步骤。本文将详细介绍使用Seurat V5进行多样本整合的正确流程,特别针对用户在使用IntegrateLayers
函数时遇到的常见问题提供解决方案。
传统方法与V5新方法的区别
在Seurat V5之前的版本中,处理多个样本的标准流程是:
- 为每个样本创建单独的Seurat对象
- 将这些对象存储在列表中
- 使用
IntegrateData
函数进行整合
然而,Seurat V5引入了新的数据结构——分层(Layers)系统,这使得处理方式发生了变化。V5推荐将所有样本数据合并到一个Seurat对象中,然后使用IntegrateLayers
函数进行整合。
正确的整合流程
以下是使用Seurat V5整合多个样本的正确步骤:
-
读取并创建单个Seurat对象: 首先为每个样本创建Seurat对象,这与传统方法相同。
-
合并样本: 使用
merge
函数将所有样本合并到一个Seurat对象中,而不是将它们保留在列表中。 -
设置样本标识: 在合并时,使用
add.cell.ids
参数为每个样本的细胞添加唯一标识,这有助于后续分析中区分样本来源。 -
执行整合: 最后使用
IntegrateLayers
函数对合并后的对象进行整合。
代码实现示例
# 1. 读取数据并创建Seurat对象列表
input.dir <- "0.data"
dir <- list.dirs(input.dir)[-1]
names(dir) <- list.files(input.dir, recursive = FALSE)
sc_list <- list()
for(i in 1:length(dir)){
counts <- Read10X(data.dir = dir[i])
sc_list[[i]] <- CreateSeuratObject(counts, project = names(dir)[i],
min.cells = 0, min.features = 0)
}
# 2. 合并所有样本到一个Seurat对象中
merged <- merge(sc_list[[1]], sc_list[-1],
add.cell.ids = names(dir))
# 3. 执行整合
integrated <- IntegrateLayers(
object = merged,
method = CCAIntegration
)
常见问题解决
用户遇到的"DefaultAssay does not have a method applicable to the list target object"错误,是因为直接将Seurat对象列表传递给了IntegrateLayers
函数。该函数期望接收的是一个合并后的Seurat对象,而不是列表。
最佳实践建议
- 样本命名:确保为每个样本设置清晰的项目名称,这有助于后续分析。
- 质量控制:在整合前,建议对每个样本进行基本的质量控制。
- 内存管理:处理大量样本时,注意内存使用情况,可以考虑分批处理。
- 方法选择:根据数据类型和实验设计选择合适的整合方法(CCA或RPCA)。
通过遵循上述流程,用户可以正确使用Seurat V5的新功能进行多样本整合,获得更可靠的分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133