Seurat V5多样本整合的正确流程解析
2025-07-01 12:54:32作者:齐冠琰
在单细胞RNA测序数据分析中,整合多个样本是一个常见且关键的步骤。本文将详细介绍使用Seurat V5进行多样本整合的正确流程,特别针对用户在使用IntegrateLayers函数时遇到的常见问题提供解决方案。
传统方法与V5新方法的区别
在Seurat V5之前的版本中,处理多个样本的标准流程是:
- 为每个样本创建单独的Seurat对象
- 将这些对象存储在列表中
- 使用
IntegrateData函数进行整合
然而,Seurat V5引入了新的数据结构——分层(Layers)系统,这使得处理方式发生了变化。V5推荐将所有样本数据合并到一个Seurat对象中,然后使用IntegrateLayers函数进行整合。
正确的整合流程
以下是使用Seurat V5整合多个样本的正确步骤:
-
读取并创建单个Seurat对象: 首先为每个样本创建Seurat对象,这与传统方法相同。
-
合并样本: 使用
merge函数将所有样本合并到一个Seurat对象中,而不是将它们保留在列表中。 -
设置样本标识: 在合并时,使用
add.cell.ids参数为每个样本的细胞添加唯一标识,这有助于后续分析中区分样本来源。 -
执行整合: 最后使用
IntegrateLayers函数对合并后的对象进行整合。
代码实现示例
# 1. 读取数据并创建Seurat对象列表
input.dir <- "0.data"
dir <- list.dirs(input.dir)[-1]
names(dir) <- list.files(input.dir, recursive = FALSE)
sc_list <- list()
for(i in 1:length(dir)){
counts <- Read10X(data.dir = dir[i])
sc_list[[i]] <- CreateSeuratObject(counts, project = names(dir)[i],
min.cells = 0, min.features = 0)
}
# 2. 合并所有样本到一个Seurat对象中
merged <- merge(sc_list[[1]], sc_list[-1],
add.cell.ids = names(dir))
# 3. 执行整合
integrated <- IntegrateLayers(
object = merged,
method = CCAIntegration
)
常见问题解决
用户遇到的"DefaultAssay does not have a method applicable to the list target object"错误,是因为直接将Seurat对象列表传递给了IntegrateLayers函数。该函数期望接收的是一个合并后的Seurat对象,而不是列表。
最佳实践建议
- 样本命名:确保为每个样本设置清晰的项目名称,这有助于后续分析。
- 质量控制:在整合前,建议对每个样本进行基本的质量控制。
- 内存管理:处理大量样本时,注意内存使用情况,可以考虑分批处理。
- 方法选择:根据数据类型和实验设计选择合适的整合方法(CCA或RPCA)。
通过遵循上述流程,用户可以正确使用Seurat V5的新功能进行多样本整合,获得更可靠的分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19